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Motivated by quantum simulation, we consider lattice Hamiltonians for Yang-Mills gauge theories with
finite gauge group, for example a finite subgroup of a compact Lie group. We show that the electric
Hamiltonian admits an interpretation as a certain natural, nonunique Laplacian operator on the finite
Abelian or non-Abelian group and derive some consequences from this fact. Independent of the chosen
Hamiltonian, we provide a full explicit description of the physical, gauge-invariant Hilbert space for pure
gauge theories and derive a simple formula to compute its dimension. We illustrate the use of the gauge-
invariant basis to diagonalize a dihedral gauge theory on a small periodic lattice.
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I. INTRODUCTION

Quantum simulation is a field of growing interest both
experimentally and theoretically [1–4]. It holds the promise
to overcome technical difficulties, such as the “sign
problem” [5–7], which affect numerical Monte Carlo
simulations in several interesting regimes, with applications
to particle physics and condensed matter systems [6,8]. In
recent years, advances in experimental techniques have
allowed the proposal and realization of different setups to
simulate physical theories via quantum-mechanical sys-
tems [9–20]. The long-term hope is that experimental and
theoretical advances may one day allow the quantum
simulation of some currently inaccessible nonperturbative
aspects of strongly coupled theories.
A particularly interesting application is the quantum

simulation of gauge theories [7,21–26], which are ubiqui-
tous in both particle and condensed matter physics. From a
theoretical standpoint, quantum simulation is most natural
in a Hamiltonian formulation with a finite-dimensional
Hilbert space. One possibility to achieve this is by replacing
the gauge group, a Lie group, with a finite group, for
example one of its finite subgroups [27–29]. Finite sub-
groups of Lie groups were already considered in the early
days of lattice field theory [30–34]. It was found that,
unlike Lie groups, finite groups undergo a “freezing”
transition, beyond which they cease to approximate the
physics of their parent Lie group. It was later pointed out,
however, that as long as an appropriate comparison is made
in the vicinity of the phase transition, finite-group gauge
theory based on sufficiently large, but fixed, subgroups of
the Lie group provides an effective description of the Lie
group gauge theory [35]. Gauge theories with finite gauge

group have also found direct applications in condensed
matter physics [36–40] and quantum gravity [41]. In the
Hamiltonian formulation, the Abelian case was considered
in [27,28,42], while the general formulation in the non-
Abelian case was given in [29]. This formulation, however,
lacked an explicit form of the electric term of the
Hamiltonian. In [41] the full Hamiltonian for a finite-group
gauge theory was derived via the transfer-matrix formu-
lation from the Wilson action.
In the present work we consider a class of finite-group

gauge theories in the Hamiltonian formulation, which
mimic some aspects of Lie group Yang-Mills theories on
the lattice. The Hamiltonian is based on the construction of
a natural Laplacian operator on the finite group and is valid
for any Abelian or non-Abelian finite group. As a special
case, this includes both the finite-group Hamiltonian
obtained via the transfer-matrix formulation from the
finite-group Wilson action, but also a wider class of
non-Lorentz-invariant theories. The characterization of
the Hamiltonian using the finite-group Laplacian may be
used to obtain nontrivial information about the theory. In
particular, we obtain a simple criterion for degeneracy of
the electric Hamiltonian, with implications for adiabatic
quantum simulation and possibly the phase diagram of the
theory. Irrespective of the choice of Hamiltonian, we show
that spin-network states are particularly suitable to give a
description of the physical, gauge-invariant Hilbert space
for pure gauge theories, and, based on this, we derive a
simple formula to compute the dimension of the physical
Hilbert space. This is especially useful to quantify the
amount of resources required in gauge-invariant quantum
simulation schemes. Finally, we illustrate the use of the
gauge-invariant basis by constructing the Hamiltonian for a
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gauge theory based on the dihedral group D4 and compute
some quantities of interest via exact diagonalization.

II. FINITE-GROUP GAUGE THEORY

A. The Hilbert space

1. Basic construction

In the Hamiltonian formulation of lattice gauge theories
[29,43,44], time is continuous while the d spatial dimen-
sions are discretized into a hypercubic lattice. Classically,
we assign a group element g ∈ G to each spatial lattice link,
where G is the gauge group. In the Lie group case, one
would typically write UμðxÞ ¼ exp ðiAμðxÞÞ ∈ G for the
gauge field variable assigned to the lattice link between
points x and xþ μ̂, where AμðxÞ is the vector potential.
Links are oriented, and if a link is traversed in the opposite
orientation, then g is replaced with g−1. Note that finite
groups have no Lie algebras, so we work with group-valued
quantities as far as possible. In what follows, we write
g ∈ G for a group element indifferently for both finite and
Lie groups G.
Since a classical configuration is given by a choice of

group element g on each lattice link, in the quantum theory
the states in the Hilbert space of each link are generally
given by a superposition [44]

jψi ¼
Z

dgψðgÞjgi; ð1Þ

where fjgig is the group element orthonormal basis,
consisting of one state jgi per group element g; it can be
thought of as a “position basis” on the group. In the case of
a Lie group, the wave function ψðgÞ is square integrable
with respect to the Haar measure. Hence, the Hilbert space
on each link can then be identified with L2ðGÞ, i.e. the
space of square-integrable functions on G [44]. For a finite
group, the Haar measure is replaced with a sum over
the group elements,

R
dg ¼ P

g, and the Hilbert space is
simply the “group algebra” C½G�, which is the complex
vector space spanned by the group element basis.
The overall Hilbert space is then given by the tensor

product Htot ¼⊗links L2ðGÞ, or Htot ¼⊗links C½G�. Note
that, for a finite group, C½G� has finite dimension, because
it is spanned by the finitely many group element states
fjgig. Therefore, the Hilbert space on each link is finite
dimensional and H is finite dimensional on a finite lattice;
the dimension is given by jGjL where L is the number of
lattice links. For a Lie group, on the other hand, we have
infinitely many basis states fjgig and therefore the Hilbert
space is infinite dimensional on each link.
In the Hamiltonian formulation of gauge theories, the

statement that the theory is invariant under gauge trans-
formations translates at the level of the Hilbert space by
restricting the allowed states only to those which are gauge

invariant. In particular, on the single-link Hilbert space
one can define left and right “translation” operators, in the
analogy where fjgig is a position basis in group space [29],

Lgjhi ¼ jghi; Rgjhi ¼ jhg−1i: ð2Þ

A local gauge transformation is given by a choice of group
element gx ∈ G at every site x of the lattice [44]. This acts
on the overall Hilbert space Htot via the operator

GðfgxgÞ ¼ ⨂
l¼hxyi∈links

LgxRgy ; ð3Þ

where fgxg is an arbitrary choice of group elements gx at
each lattice site x, and the link l ¼ hxyi connects the points
x and y. In other words, each link state jgli transforms
as jgli ↦ jgxglg−1y i.
The only physical states are those which satisfy the

so-called Gauss law constraint [43–45]

GðfgxgÞjψi ¼ jψi; ð4Þ

for any possible choice of local assignments fgxg of group
variables to lattice sites. Gauss’s law (4) is an exponentiated
version of the usual Gauss law formulated in terms of Lie
algebra generators. The states which satisfy Eq. (4) form
the physical, gauge-invariant Hilbert spaceHphys. Note that
the condition (4) only involves group-valued quantities and
is thus valid for both Lie groups and finite groups. In the
case of finite groups, the condition simplifies because it is
sufficient to impose invariance against a set of generators of
the finite group.
One can also straightforwardly include matter fields

such as fermion fields which live on each lattice site.
Under a gauge transformation, they transform as ΨðxÞ →
RðgxÞΨðxÞ, where R is some representation of the
gauge group.

2. The representation basis and the Peter-Weyl theorem

It turns out to be fruitful to introduce a different basis of
the overall Hilbert space H, “dual” to the group element
basis. The operators Lg and Rg introduced in Eq. (2) are
unitary representations of G, known as the left and right
regular representations [46,47]. This is because LgLh¼Lgh

and ðLgÞ−1 ¼ Lg−1 ¼ ðLgÞ†, as can be explicitly checked by
acting on the group element basis, and the same holds for R.
Their representation theory leads to the Peter-Weyl theorem
[44,47,48], which states that, for a finite or compact Lie
group G,

L2ðGÞ ¼ ⨁
j∈Σ

V�
j ⊗ Vj; ð5Þ

where j is a label for the irreducible representations (irreps)
of G, and Σ is the set of all irreps of G. For finite groups
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L2ðGÞ is replaced, as usual, with C½G�. Here Vj is the
representation vector space corresponding to representation
j and V�

j its dual vector space. For both compact Lie groups
and finite groups the irreps are finite dimensional and can
be chosen to be unitary. For a finite group, Σ is a finite set,
while it is countably infinite for a compact Lie group
[46,47]. In terms of the Peter-Weyl decomposition, the left
and right regular representations take a particularly simple
form [48],

LgRh ¼ ⨁
j
ρjðgÞ� ⊗ ρjðhÞ; ð6Þ

where ρj is the matrix of the jth irrep of G. The individual
action of either Lg or Rh may be obtained by setting either g
or h to the identity. Equation (6) is especially useful
because, as we will see in Sec. III, it simplifies the action
of the Gauss law constraint (4).
The Peter-Weyl theorem provides an alternative basis for

the single-link Hilbert space. For each irrep j one chooses
appropriate bases for V�

j and Vj, which we denote fjjmig
and fjjnig respectively, where 1 ≤ m; n ≤ dim j. Here
dim j≡ dimVj is the dimension of the representation.
On each representation subspace, we use the shorthand
notation jjmni≡ jjmi ⊗ jjni. Then the “representation
basis” for L2ðGÞ or C½G� is given by the set fjjmnig for all
j ∈ Σ and 1 ≤ m; n ≤ dim j. In terms of the group element
basis, one has [29]

hgjjmni ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dimðjÞ
jGj

s
½ρjðgÞ�mn; ð7Þ

where the bases fjjmig, fjjnig are chosen so that ρj is
unitary. It should be emphasized that Eq. (7) is valid for
both finite and compact Lie groups; jGj is either the order
of the finite group or the volume jGj≡ R

dU1 given by the
possibly unnormalized Haar measure [44,48]. It is a basic
result of the representation theory of finite groups thatP

j ðdim jÞ2 ¼ jGj, which ensures that the group element
basis and the representation basis have the same number
of states [46].
Since every group admits a trivial, one-dimensional irrep

with ρðgÞ≡ 1, we always have a singlet representation state
j0i, which may be extended to the whole lattice to form the
“electric ground state” j0Ei,

j0Ei ¼ ⨂
l∈links

j0il; j0i ¼ 1ffiffiffiffiffiffiffijGjp X
g

jgi; ð8Þ

where we used Eq. (7) to express j0i in the group element
basis. We have summarized the representation theory of
some groups of interest in Appendix A.
In the specific case of the group ZN , the representations

are all one dimensional because ZN is Abelian and

therefore m ¼ n ¼ 1 and can be omitted. If ξ is a
generator of ZN , then the group elements are ZN ¼
f1;ξ;ξ2;…;ξN−1g and the irreps are simply ρjðξkÞ ¼ ωkj

N

for j ¼ 0; 1;…; N − 1, with ωN ¼ e2πi=N . The bases fjξkig
and fjjig are related by

jji ¼
XN−1

k¼0

hξkjjijξki ¼ 1ffiffiffiffi
N

p
XN−1

k¼0

ωkj
N jξki; ð9Þ

which is just the discrete Fourier transform. In the case
of the dihedral group D4 with eight elements, we have
four one-dimensional representations, each of which
spans a one-dimensional subspace of C½G�. We then have
a two-dimensional representation which spans a 22 ¼
4-dimensional subspace of C½G� through the four basis
elements jjmni for 1 ≤ m; n ≤ 2.

B. The Hamiltonian

1. Basic construction

The Hamiltonian for a Yang-Mills gauge theory on the
lattice takes the form [29,41,43,44,49]

H ¼ λE
X
l∈links

hE þ λB
X
□

hBðg□Þ; ð10Þ

where hE depends only on each lattice link, while hB
depends on the lattice plaquettes □ and g□ ¼ g1g2g−13 g−14
is the product of the four link variables in a lattice
plaquette with the appropriate orientation. It is also
possible to add matter fields, but we focus here on the
pure gauge theory.
If the gauge group is a Lie group, each group element

g ¼ eiX can be written as the exponential of a Lie algebra
element X. Then one also has infinitesimal generators of
left translations bla

L such that LeiT
a ¼ expðil̂a

LÞ, where Ta is
a Lie algebra basis and a is a color index [44]. In other
words, l̂L is the Lie algebra representation corresponding
to the group representation L and plays the role of the
chromoelectric field.
The Lie group Hamiltonian, also known as the Kogut-

Susskind Hamiltonian, is then given by [43,44]

hE ¼
X
a

ðl̂a
LÞ2; hB ¼ 2ðdim ρ − Re trρðg□ÞÞ; ð11Þ

where ρ is the fundamental representation of SUðNÞ, with
couplings λE ¼ g2=2 and λB ¼ 1=g2 in terms of a coupling
constant g (the lattice spacing is set to 1). As the group
element basis may be thought of as a position basis in group
space, the infinitesimal generators of translations l̂a

L may
be thought of as “momentum” operators in group space.
Then the electric Hamiltonian hE, which is the sum of the
squares of the momenta in all directions, is a Laplacian in
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group space. Applying the Peter-Weyl decomposition (6)
to l̂a

L, one finds that [44,48]

hE ¼
X
a

ðl̂a
LÞ2 ¼

X
jmn

CðjÞjjmnihjmnj; ð12Þ

where CðjÞ is the quadratic Casimir operator, which
depends only on the representation CðjÞ. For U(1),
for example CðjÞ ¼ j2, while for SU(2) one finds
CðjÞ ¼ jðjþ 1Þ.
We note that the magnetic Hamiltonian depends only on

group-valued quantities and is therefore well defined for
both Lie groups and finite groups. On the other hand,
the electric Hamiltonian depends on the infinitesimal Lie
algebra through l̂a

L and therefore the definition does not
extend to finite groups. The decomposition (12) is well
defined also for finite groups, but one must leave the
coefficients CðjÞ unsatisfactorily unspecified because finite
groups do not have a Casimir operator [29].
If one thinks of a finite group as a natural discretization

of some parent Lie group, the natural choice of electric
Hamiltonian is a discrete Laplacian on the finite group. The
geometric structure of a finite group is that of a graph, with
group elements as vertices and the group operation defining
the edges. This is called a “Cayley graph.” The discrete
Laplacian on the finite group is then naturally given by the
graph Laplacian of the Cayley graph. This choice also
preserves the interpretation of the electric Hamiltonian as a
quantum-mechanical rotor in group space [43].
We explain the construction of the finite-group Laplacian

in detail in Sec. II B 2, and the resulting Hamiltonian takes
the form of (10) with

H ¼ λE
X
l∈links

hE þ λB
X
□

hBðg□Þ;

hE ¼
X
g∈Γ

ð1 − LgÞ; hB ¼ hBðg□Þ; ð13Þ

where Γ ⊂ G is a subset of the group (not a subgroup)
such that
(1) 1 ∉ Γ, i.e. Γ does not contain the identity element.
(2) Γ−1 ¼ Γ, i.e. it is invariant under inversion of group

elements. In other words, if g ∈ Γ, then g−1 ∈ Γ also.
(3) gΓg−1 ¼ Γ, i.e. it is invariant under conjugation. In

other words, Γ is a union of conjugacy classes of G.
These conditions on Γ ensure that the electric Hamiltonian
is gauge invariant. On the other hand, as usual, the
magnetic term is gauge invariant as long as hB is any real
function such that hBðg1g□g−11 Þ ¼ hBðg□Þ for any g1 ∈ G.
As explained in Sec. II B 3, the Hamiltonian (13) includes
as a special case the transfer-matrix Hamiltonian obtained
in [41] which consists of a certain specific choice of
subset Γ. The choice of Γ is in fact not unique, a fact
which we will also discuss in later sections.

While the magnetic Hamiltonian hB is diagonal in the
group element basis, the electric Hamiltonian hE is diago-
nal in the representation basis, and in fact [29]

hE ¼
X
jmn

hEðjÞjjmnihjmnj; ð14Þ

hEðjÞ ¼ jΓj − 1

dim j

X
g∈Γ

χjðgÞ; ð15Þ

where jΓj is the number of elements in Γ and χj is the
character of the irrep labeled j. The electric Hamiltonian
may be interpreted as an “on-link” hopping term within
group space; in fact, up to a constant, it may be written as

hE ¼ −
X
g∈Γ

X
h∈G

jghihhj; ð16Þ

and it favors each link to sit in the electric ground state (8),
which is fully delocalized in group space. On the other
hand, the magnetic term is a plaquette-based potential
which pushes plaquettes close to the identity. The com-
petition between the two noncommuting terms gives rise to
nontrivial dynamics.
We would like to emphasize that the description of the

electric Hamiltonian hE in Eq. (13) as the graph Laplacian
of the Cayley graph associated with the group is not simply
an interesting analogy, but also a tool which may be used
to extract information on the Hamiltonian itself. As an
example, we note the well-known fact that the smallest
eigenvalue of a graph Laplacian is always zero [with at least
one eigenvector given by the trivial representation state (8)]
and its degeneracy equals the number of connected com-
ponents of the graph [50]. Moreover, it is not hard to show
that if Γ does not generate the group G, but rather only a
subgroup hΓi < G, then the Cayley graph splits into
connected components which are identified with the cosets
of hΓi inG. The number of such components, and therefore
the degeneracy of the ground state of hE on each link, is
given by

electric ground state degeneracy ¼ jGj
jhΓij : ð17Þ

This is the degeneracy of hE on each link; the degeneracy
of the electric Hamiltonian HE ¼ P

links hE on the Hilbert
space of the whole lattice is larger. If, instead, Γ generates the
whole group, then the electric Hamiltonian is not degenerate.
A detailed proof can be found in Appendix B 1.
The degeneracy of the electric ground state is not only an

important feature of the theory, but is also technically
important for methods such as adiabatic quantum simu-
lation, which typically start from the electric ground
state (8) and adiabatically switch on the magnetic
Hamiltonian. If the ground state is degenerate, this becomes
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more difficult. We also note that a different formulation
with possibly degenerate electric Hamiltonian and a finite
gauge group was already considered in [51].
As we will see at the end of Sec. II B 2, an electric

Hamiltonian with degenerate ground state can be con-
structed in the simple case of the dihedral group D4.
In general, the electric ground state degeneracy can
also occur with the choice of Γ arising from the transfer-
matrix formulation of the Wilson action, as described in
Sec. II B 3. For example, consider the permutation group
G ¼ S5. Starting from the Wilson action in the six-
dimensional faithful irrep of S5, one finds hE with Γ equal
to the conjugacy class of the 5-cycles; then Γ generates the
subgroup hΓi ¼ A5 and since jS5j=jA5j ¼ 2, the electric
Hamiltonian ground state is twofold degenerate, with the
ground states spanned by the two representation states
corresponding to the one-dimensional irreps.

2. The finite-group Laplacian

In this section we explain in detail the construction of
the electric Hamiltonian on each link as the finite-group
Laplacian, i.e. the graph Laplacian of the Cayley graph of
the finite group. Given a finite group G, we choose a set of
generators Γ ⊂ G, which we require to be invariant under
inversion, that is Γ−1 ¼ Γ, and moreover that it is the union
of conjugacy classes, so that it is invariant under con-
jugation, gΓg−1 ¼ Γ for any g inG [50]. We choose Γ not to
include the identity element and we note that the choice of
Γ is not unique. The Cayley graph has the group elements
as vertices, and we place an edge between g ∈ G and h ∈ G
if hg−1 ∈ Γ. The result is a simple undirected graph.
Examples of Cayley graphs for the groups Z5 and D4

are shown in Fig. 1. Given any graph, its Laplacian is
defined as [50]

Δ ¼ D − A; ð18Þ

where A is the adjacency matrix andD is the degree matrix.
Each of these matrices acts on the vector space of graph
vertices, which in the case of a Cayley graph can be
identified with the group algebra C½G�. The degree matrix

is always diagonal, and in this case D ¼ jΓj1. The
adjacency matrix A is given by

Agh ¼
�
1 gh−1 ∈ Γ
0 otherwise

ð19Þ

for group elements g, h. On a basis element, one has

Ajgi≡X
h

Ahgjhi ¼
X
k∈Γ

jgki ¼
X
k∈Γ

jgk−1i ¼
X
k∈Γ

Rkjgi;

ð20Þ

where Rk is the right regular representation, and we used
the closure of Γ under inversion. Therefore as an operator
on C½G�,

A ¼
X
k∈Γ

Rk ¼ ⨁
j
1j ⊗

�X
k∈Γ

ρjðkÞ
�
; ð21Þ

where we used the Peter-Weyl decomposition (6) for Rk.
Then we see that�X

k∈Γ
ρjðkÞ

�
ρjðgÞ ¼

X
k∈Γ

ρjðkgÞ ¼
X
k∈Γ

ρjðgkg−1gÞ

¼ ρjðgÞ
�X

k∈Γ
ρjðkÞ

�
; ð22Þ

where we used the closure of Γ under conjugation.
Hence the operator ðPk∈Γ ρjðkÞÞ commutes with the

irreducible representation ρj and as such is proportional
to the identity by Schur’s lemma [46]. The constant of
proportionality can be readily computed by taking a trace.
This therefore implies

A ¼
X
j

λjPj; λj ¼
1

dim j

X
k∈Γ

χjðkÞ; ð23Þ

where Pj ¼
P

mn jjmnihjmnj is the projector onto the jth
representation subspace, and χj is the character of the irrep

FIG. 1. Examples of Cayley graphs. (a),(b) Z5 with Γ ¼ fξ; ξ−1g and Γ ¼ fξ; ξ2; ξ−1; ξ−2g, respectively. In both cases, ξ is a generator
of the group. (c) D4 with Γ ¼ fr; r−1; sg.
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labeled j. Therefore the Laplacian of the Cayley graph is
given by

Δ ¼
X
j

fðjÞPj; fðjÞ ¼ jΓj − 1

dimðjÞ
X
k∈Γ

χjðkÞ; ð24Þ

which is the same form as the electric Hamiltonian in the
representation basis (14). For any finite group, this formula
defines the electric energy fðjÞ to be assigned to each irrep.
We give some examples of this construction. For the

group ZN it is natural to construct the electric eigenvalues
fðjÞ with the generating set Γ ¼ fξ; ξ−1g where ξ is a
generator of ZN , which results in

fðjÞ ¼ fðN − jÞ ¼ 4sin2
�
πj
N

�
; ð25Þ

which is the same as in [27]. Moreover, for large N,

fðjÞ → 4π2

N2
j2 N large; ð26Þ

which is proportional to the Casimir eigenvalues of U(1)
gauge theory [28]. Thus both a truncation of U(1) theory
and proper ZN theory naively approach U(1) theory for
large N, albeit in different ways. One can however choose a
different generating set, such as Γ ¼ fξ; ξ−1; ξ2; ξ−2g and
the corresponding eigenvalues would be

fðjÞ ¼ fðN − jÞ ¼ 4sin2
�
πj
N

�
þ 4sin2

�
2πj
N

�
: ð27Þ

For the dihedral group D4 we can choose, for example,

Γ ¼ Γ1 ¼ fr; r3; s; r2sg;

which gives rise to the eigenvalues fðjÞ shown in Table I,
where the representations are ordered like in the character
table in Table III in Appendix A 2. Note that Γ1 generates
the whole group.
By looking at its character table, we may in fact classify

all possible choices of Γ for D4. In fact, D4 has five
conjugacy classes,

C0 ¼ feg; C1 ¼ fr; r3g; C2 ¼ fr2g;
C3 ¼ fs; r2sg; C4 ¼ frs; r3sg:

One can check that, as is generally true,
P

i jCij ¼ 8 ¼ jGj.
In this case, all conjugacy classes are invariant under
inversion, i.e. C−1

i ¼ Ci. Hence any union of the Ci’s,
i ≠ 0 is a valid choice for Γ. There are 24 such possibilities.
Note that this is not true in general, in which case one must
choose conjugacy classes to ensure that Γ−1 ¼ Γ. Together
with Γ1, in the next sections we will consider in more detail
two other specific cases,

Γ2 ¼ C1 ∪ C3 ∪ C4 ¼ fr; r3; s; rs; r2s; r3sg;
Γ3 ¼ C1 ∪ C2 ¼ fr; r2; r3g:

The choice of Γ2 is especially interesting, because it
corresponds to the Hamiltonian arising from the transfer-
matrix procedure when hB is the real part of the trace of
the faithful irrep of D4; therefore, this choice gives rise to a
manifestly Lorentz-invariant theory. Note that also Γ2

generates the whole group. On the other hand, the set
Γ3 ¼ fr; r2; r3g does not generate the whole group, but
only the subgroup of rotations; this is reflected in the
electric eigenvalues in Table I, with the electric ground state
being twofold degenerate on each link.

3. Action formulation and Lorentz invariance

The Kogut-Susskind Hamiltonian (11) may be obtained
via the transfer-matrix formulation from the Euclidean
Wilson action [52,53]

S ¼ −
2

g2
X
□

Re trρðg□Þ; ð28Þ

where g is the coupling. In the path-integral formulation,
the lattice is fully discretized and thus plaquettes extend
also in the time direction. The action (28) is also perfectly
valid for finite groups, as one simply replaces the integra-
tion measure over the Lie group with a sum over the
elements of a finite group. The representation ρ can be
chosen to be any faithful representation of the finite
group (not necessarily irreducible). One may then repeat
the transfer-matrix formulation for an arbitrary finite
group [41]. Starting from the action (28), the transfer-
matrix procedure gives rise to a Hamiltonian of the
form (13) that we have described, with

Γ ¼ fg ∈ G; g ≠ 1;max½Re trρðgÞ�g;
hB ¼ −2Re trρ: ð29Þ

In other words, the magnetic Hamiltonian is directly
inherited from the action, while the electric Hamiltonian
takes the form of the finite-group Laplacian with a specific

TABLE I. Eigenvalues of the single-link electric Hamiltonian
fðjÞ for the finite groupD4, with three choices of generating sets:
Γ1, Γ2, and Γ3, respectively.

fðjÞ
Γ j 0 1 2 3 4

Γ1 ¼ fr; r3; s; r2sg 0 4 4 8 4
Γ2 ¼ fr; r3; s; rs; r2s; r3sg 0 8 8 8 6
Γ3 ¼ fr; r2; r3g 0 4 0 4 5
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choice of the generating set Γ for the Cayley graph. In the
example of the gauge group D4, if we choose the faithful,
two-dimensional irrep for hB, then Re trρðgÞ can equal
2; 0;−2 on the different conjugacy classes (see the character
table ofD4 in Table III). Since Re trρð1Þ ¼ 2, then Γ consists
of all group elements g such that Re trρðgÞ ¼ 0. This gives
rise to the generating set Γ2 anticipated in Sec. II B 2.
These considerations are especially important for the

Lorentz invariance of the theory. While the lattice discreti-
zation breaks the Lorentz symmetry to the subgroup of
Euclidean cubic rotations, as long as this subgroup is
preserved one expects to recover Lorentz invariance in the
continuum limit. In particular, the action (28) is manifestly
invariant under Euclidean cubic rotations and, therefore, one
expects that it gives rise to a Hamiltonian which describes a
Lorentz-invariant theory in the continuum. Intuitively, a
Lorentz transformation can swap the electric and magnetic
fields, and it is therefore not surprising that in a Lorentz-
invariant theory the electric and magnetic Hamiltonians must
satisfy specific relations with each other.
In particular, finite-group Hamiltonians of the form (13),

which however do not respect the relations (29), cannot
arise from an action of the form (28). For example, they
could come from an action in which plaquettes extending in
one direction (the “time” direction) are weighted differ-
ently. It is unclear whether such Hamiltonians describe a
Lorentz-invariant theory. This includes in particular setting
hEðjÞ ¼ j2 for subgroups of U(1) and hEðjÞ ¼ jðjþ 1Þ for
subgroups of SU(2) in (14), while keeping hB unchanged.
In all such cases, the remnant Lorentz symmetry is
explicitly broken. While Lorentz symmetry is required in
particle physics applications, it might not be necessarily
required in other cases, such as some condensed matter
applications, and one may thus independently choose Γ
and hB.

4. Classification of the possible theories and other models

The construction of finite-group Yang-Mills gauge
theories with Hamiltonian (13) involves a few arbitrary
choices which can be classified. Since the Hilbert space is
fixed to the physical, gauge-invariant Hilbert space Hphys,
the only possible choices involve the various terms in the
Hamiltonian. Given a gauge group G in d spatial dimen-
sions, one may arbitrarily choose:
(1) A set Γ of group elements which does not contain the

identity and is invariant under both inversion and
conjugation Γ−1 ¼ Γ and gΓg−1.

(2) A choice for the magnetic Hamiltonian hB¼hBðg□Þ.
Since it must be real and satisfy hBðg1g□g−11 Þ ¼
hBðg□Þ, i.e. it is a “class function,” by a well-known
result [46], it may be expanded as a sum of
characters of irreducible representations, hBðgÞ ¼P

j cjχjðgÞ for coefficients cj which may be chosen
arbitrarily, while ensuring that hBðgÞ is real. Most

typically hB ¼ −2Re trρ, where ρ is some faithful
representation (not necessarily an irrep).

(3) If present, possible choices of representations and
Hamiltonians in the matter sector.

Further considerations involve the Lorentz symmetry, as
explained in Sec. II B 3.
We note that the above construction allows further

generalizations. In particular, the discretized d-dimensional
space does not have to take the form of a hypercubic lattice,
but more generally can be a Bravais or non-Bravais lattice,
or even a cell complex. No difference arises for the electric
term, which is link based, and the plaquette variable in the
magnetic term is replaced by an elementary closed loop in
the lattice. Moreover, as we will see in Sec. III, the
description of the gauge-invariant Hilbert space in terms
of spin-network states is valid generally on an arbitrary
graph discretizing spacetime.

III. THE PHYSICAL HILBERT SPACE

As we remarked in Sec. II A 1, while the overall Hilbert
space of the pure gauge theory is Htot ¼⊗links C½G�,
only those states that satisfy the so-called Gauss law
constraint (4) are to be considered physical [43–45]. For
gauge theories based on most compact Lie groups, the
Wilson loops (despite being overcomplete) span the space
of gauge-invariant states [54,55]. This, however, is not
necessarily true for finite groups [54,56]; this means that in
some cases, it is possible to construct different gauge-
invariant states, which nevertheless have identical Wilson
loops. We mention that this difficulty does not arise for
Abelian finite groups such as ZN , in which case the Wilson
loops do span the physical Hilbert spaceHphys. The explicit
description of the physical Hilbert space of gauge theories
has a long history (see for example [57–60] for different
approaches) and several works have attempted to quantify
the size of the physical Hilbert space in various quantum
simulation schemes (for example [61,62]). As will be
discussed in Sec. III A, the gauge-invariant Hilbert space
for pure gauge theories may be described in terms of “spin-
network states.” This basis turns out to be particularly
suitable for finite gauge groups and in Sec. III B we give a
simple formula to compute the dimension of the physical
Hilbert space for any finite gauge group.

A. Spin-network states

The physical Hilbert space of pure gauge theories with
either Lie or finite gauge group can be explicitly described
in terms of spin-network states [58,59]. Spin-network states
can be defined indifferently when the d-dimensional space
is discretized as an arbitrary graph and are thus valid in
arbitrary dimension with arbitrary lattices and boundary
conditions.
The first key observation is that the action of the Gauss

law operator (4) is block diagonal in the representation
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basis, as can be seen from Eq. (6). Then starting from the
Hilbert space in the representation basis (5), we can, as
usual, permute the summation and product, obtaining

Htot ¼ ⨂
links

⨁
j∈Σ

V�
j⨂Vj ¼ ⨁

fjg∈fΣg
⨂

l∈links
V�
jl
⊗ Vjl ; ð30Þ

where now fjg is an assignment of an irrep jl to each lattice
link l, and fΣg is the set of the possible assignments. The
second key observation is that the gauge transformations
(4) are given by an independent group-valued variable gx at
each site x of the lattice.
Moreover, due to (6) the gauge transformation associated

with one site x acts at most on one of the spaces Vj or V�
j

associated with a link, but it cannot act on both. One can
then split the two vector spaces Vj and V�

j associated with
each link and reorder the V’s in the tensor product over
links so that Vj’s are now grouped together according to the
sites and not the links,

Htot ¼ ⨁
fjg∈fΣg

⨂
x∈sites

�
⨂
l−¼x

V�
jl

�
⊗

�
⨂
lþ¼x

Vjl

�
; ð31Þ

where by lþ and l− we denote respectively the target and
source vertex of link l (see Fig. 2).
We can repeat the same set of operations for the gauge

transformation operator (3), which is therefore given by

GðfgxgÞ ¼ ⨁
fjg∈fΣg

⨂
x∈sites

�
⨂
l−¼x

ρ�jlðgxÞ
�

⊗
�
⨂
lþ¼x

ρjlðgxÞ
�
:

ð32Þ

In the above decomposition, the gauge transformations
now act independently for each x and the Gauss law
constraint (4) gives the physical Hilbert space

Hphys ¼ ⨁
fjg∈fΣg

⨂
x∈sites

Inv

��
⨂
l−¼x

V�
jl

�
⊗

�
⨂
lþ¼x

Vjl

��
: ð33Þ

Given a representation ρ (not necessarily irreducible) with
representation space Vρ, the set of invariant vectors InvðVρÞ
is the set of vectors v ∈ Vρ such that ρðgÞv ¼ v for all
g ∈ G. Note that this is a separate notion from that of an
“invariant subspace.” The characterization of the Hilbert
space (33) implies that any physical, gauge-invariant state
jΨi [i.e. a state which satisfies the Gauss’s law (4)] may be
expanded in a basis of spin-network states,

jΨi ¼
X
fjg

X
A

Ψðfjg;AÞjfjg; Ai;

jfjg; Ai ¼ ⨂
x∈sites

jfjgx; axi; ð34Þ

where fjg is an assignment of irreps to lattice links and
A ¼ ða1;…aVÞ is a multi-index which labels the choice of
a basis element of invariant states at each site. With fjgx we
denote the irreps assigned to the links connected to site x.
For a hypercubic lattice in d dimensions with periodic

boundary conditions, each site is connected to 2d links and
therefore 2d terms appear in the tensor product within each
Inv in Eq. (33). If instead we choose open boundary
conditions, the sites in the bulk will again be connected
to 2d links, but the sites on the boundary will be connected
to fewer links and thus fewer terms will appear in the tensor
product for those sites. In the general case, the number of
terms in the tensor product within each Inv will thus depend
on the site. We choose to work directly with the spaces of
invariant vectors rather than with spaces of intertwiners
more commonly employed in the literature on spin-network
states [58,59]. We also would like to note that the physical
Hilbert space (33) contains all gauge-invariant states,
possibly also including states in sectors with a noncon-
tractible spatial Wilson line. Instead noncontractible loops
in the time direction require an extension of the total Hilbert
space [41].
The calculation of a basis of invariant states (or,

equivalently, of the intertwiners) can be difficult in the
Lie group case, especially since they admit infinitely many
irreps. On the other hand, since the number of links
connected to each site is finite and independent of the
lattice volume, one needs only compute the invariant states
of a finite number of tensor product representations which
does not scale with the lattice volume.
This can be achieved in practice by explicitly writing

out the matrices of the tensor product representation
ρðgÞ≡ ð⊗l−¼x ρ

�
jl
Þ ⊗ ð⊗lþ¼x ρjlÞ and numerically solving

the simultaneous equations ρðgÞv ¼ v for a set of gener-
ators of G. In a d-dimensional periodic hypercubic lattice,
the number of terms in the tensor product equals 2d and the
maximum dimension of the tensor product representation is
bounded by ðdim jÞ2d ≤ jGjd, owing toPj ðdim jÞ2 ¼ jGj,
independent from the lattice volume.
As an example, we work out explicitly the case of a 2 × 2

square lattice with periodic boundary conditions. As shown

FIG. 2. Left: a 2 × 2 square lattice with periodic boundary
conditions, showing the labels of the links. Right: labeling of sites
attached to a link.
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in Fig. 2, this system has four vertices and eight links with
appropriate labels. Expanding Eq. (33) explicitly, we see
that in this case

Hphys ¼ ⨁
j1;…j8

Inv½V�
j1
⊗ V�

j4
⊗ Vj5 ⊗ Vj8 � ⊗

⊗ Inv½V�
j5
⊗ V�

j2
⊗ Vj1 ⊗ Vj7 � ⊗

⊗ Inv½V�
j6
⊗ V�

j7
⊗ Vj3 ⊗ Vj2 � ⊗

⊗ Inv½V�
j3
⊗ V�

j8
⊗ Vj6 ⊗ Vj4 �: ð35Þ

Now consider a single invariant subspace Inv½V�
j1
⊗ V�

j2
⊗

Vj3 ⊗ Vj4 � with arbitrary assignment of irreps. This vector
space admits an orthonormal basis fjj1j2j3j4; aig where
1 ≤ a ≤ dim Inv½V�

j1
⊗ V�

j2
⊗ Vj3 ⊗ Vj4 � indexes the

basis vector. We can expand the basis vectors explicitly
in terms of the bases of the Vj as [see also the discussion
around Eq. (7)]

jj1j2j3j4; ai ¼
X

m1;m2;n3;n4

ψðj1m1j2m2j3n3j4n4; aÞ

× jj1m1i ⊗ jj2m2i ⊗ jj3n3i ⊗ jj4n4i:
ð36Þ

The basis vectors can be chosen to be orthonormal. By
virtue of spanning the space Inv½V�

j1
⊗ V�

j2
⊗ Vj3 ⊗ Vj4 �,

they are invariant vectors of the tensor product representa-
tion ρ≡ ρ�j1 ⊗ ρ�j2 ⊗ ρj3 ⊗ ρj4 ; as such, they satisfy
ρðgÞjj1j2j3j4; ai ¼ jj1j2j3j4; ai for all g ∈ G. The coef-
ficients of the expansion ψðj1m1j2m2j3n3j4n4; aÞ may be
easily computed, for example by writing the tensor product
representation matrices ρðgÞ explicitly and then solving
the simultaneous equations ρðgÞv ¼ v. The dimension of
the space of invariant vectors depends on the four repre-
sentations assigned to the relevant site. Now let
A ¼ ða1; a2; a3; a4Þ, which implicitly depends on fjg
(because the range of each ax depends on the irreps
assigned to site x). Given any assignment of irreps fjg,
A is a choice of a basis vector of invariant states at the
four sites. Therefore an orthonormal basis for the gauge-
invariant Hilbert space is given by

jfjg;Ai ¼ jj1j4j5j8; a1i ⊗ jj5j2j1j7; a2i ⊗
⊗ jj6j7j3j2;a3i ⊗ jj3j8j6j4; a4i; ð37Þ

for any possible assignment fjg of irreps to links and then
all possible choices A of an invariant vector at each of the
four sites. The spin-network states jfjg;Ai then form a
basis of the gauge-invariant Hilbert spaceHphys. Expanding
the tensor product, we find an explicit expression for these
states in terms of the representation basis,

jfjg;Ai ¼
X

n1;…n8

X
m1;…m8

ψðj1m1j4m4j5n5j8n8ja1Þ

× ψðj5m5j2m2j1n1j7n7ja2Þ
× ψðj6m6j7m7j3n3j2n2ja3Þ
× ψðj3m3j8m8j6n6j4n4ja4Þ
× jj1m1n1i ⊗ jj2m2n2i ⊗ � � � jj8m8n8i; ð38Þ

where we have restored the ordering of the vector spaces
Vjs and used again the shorthand jjmni ¼ jjmi ⊗ jjni.
We note in particular that, despite having introduced a
splitting of the variables at each link, in the final answer
this splitting disappears and the spin-network states can
be entirely expressed in terms of the representation
basis jjmni.

B. The dimension of the physical Hilbert space

As we have seen in the previous section, spin-network
states give an explicit description of the physical Hilbert
space Hphys as

Hphys¼ ⨁
fρg∈fΣg

⨂
v∈sites

Inv

��
⨂
l−¼v

V�
ρl

�
⊗
�
⨂
lþ¼v

Vρl

��
; ð39Þ

where InvðρÞ is the space of invariant vectors of the
representation ρ, fρg is an assignment of irreps to links
and fΣg is the set of such possible assignments. For a
finite group,

dim InvðρÞ ¼ 1

jGj
X
g∈G

χρðgÞ; ð40Þ

where χρ is the character of ρ. A proof of this result can be
found in Appendix B 2. This fact can be used to obtain
a general formula for the dimension of Hphys, which is
valid for any lattice in any dimension with any boundary
conditions. On a connected lattice with L links and V sites,
we will show that

dimHphys ¼
X
C

�jGj
jCj

�
L−V

; ð41Þ

where the sum runs over all conjugacy classes C of the
group, and jCj is the size of C. The ratio jGj=jCj is always
an integer by the orbit-stabilizer theorem [46]. Since for a
connected graph L − V ≥ −1, the dimHphys in Eq. (41) is
always an integer. This is clear for L − V ≥ 0; when
L − V ¼ −1 the graph is a tree and since

P
C jCj ¼ jGj,

we find dimHphys ¼ 1; this is to be expected because, on a
tree, all the physical degrees of freedom can be rotated
away by gauge transformations.
Using Eq. (40), together with the fact that the character

of a tensor product is given by the product of the characters,
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we may readily prove Eq. (41). From the general formula
for the gauge-invariant Hilbert space, we have

dimHphys ¼
X

j1j2���jL

Y
x∈sites

dimInv

��
⨂
l−¼x

V�
ρl

�
⊗

�
⨂
lþ¼x

Vρl

��

¼ 1

jGjV
X

j1j2���jL

X
g1g2���gV

Y
x∈sites

�Y
l−¼x

χ�jlðgxÞ
�

×

�Y
lþ¼x

χjlðgxÞ
�
: ð42Þ

Within the product over all sites, there are exactly 2L factors
of characters χ, as each link contributes two representation
spaces V and each representation space gives rise to a
character. Thus grouping characters by link, we obtain

dimHphys ¼
1

jGjV
X

g1g2���gV

Y
l¼hxx0i∈links

hgx; gx0 i; ð43Þ

where we denoted hg; hi ¼ P
j χjðgÞ�χjðhÞ. It is a well-

known result that hg; hi is zero unless g and h belong to
the same conjugacy class, in which case hg; hi ¼ jGj=jCj
where C is the conjugacy class of both g and h [46]. If any
two adjacent sites x and x0 have gx and gx0 in different
conjugacy classes, then hgx; gx0 i ¼ 0 and the corresponding
term in the sum is zero. Assuming that the lattice is
connected, this implies that the product over all links is
zero unless all the gx at each site x belong to the same
conjugacy class. Then, since hgx; gx0 i is constant on con-
jugacy classes, we can write

dimHphys ¼
1

jGjV
X
C

X
g1g2���gV∈C

jGjL
jCjL ¼

X
C

�jGj
jCj

�
L−V

;

ð44Þ

which concludes the proof. In the Abelian case the above
formula simplifies as all conjugacy classes are singlets and
therefore dimHphys ¼ jGjL−Vþ1. Thus finite Abelian groups
have the largest physical Hilbert space among all groups of
the same order. For periodic boundary conditions in a
hypercubic lattice, L ¼ Vd and as such dimH ¼ jGjVd,
while dimHphys ≈ jGjVðd−1Þ, so that the physical Hilbert
space has roughly the same size as the overall Hilbert space
in one lower dimension. Nonetheless, both spaces grow
exponentially with the lattice size.
As a further example, we consider the dimension of the

Hilbert space for pure D4 gauge theory. Using Eq. (41),
we find for G ¼ D4 on a lattice with L links and V sites
(see also [63]),

dimHphys ¼ 8L−V
�
2þ 3

2L−V

�
: ð45Þ

The dimension of the physical Hilbert space for some two-
dimensional finite square lattices in 2þ 1 dimensions is
shown in Table II. We see that its size grows quickly with
the lattice size. We point out that even for a 2 × 2 periodic
lattice with a small group such as D4 it is not practical to
write down all possible gauge-invariant states. Unless the
structure happens to be very sparse, writing down the 8960
physical basis elements in terms of the jGjL ¼ 88 basis
elements in the representation basis using 4B floating
point numbers would require roughly 600 GB of memory.
For a 3 × 3 periodic lattice this number rises to 20YB
or 2 × 1016 GB.
Finally, we remark that since matter fields are site based,

the spin-network states may be extended to this case as
well; the physical Hilbert space would then be given again
by Eq. (33) with an extra factor of the matter Hilbert space
at each site within each Inv. The detailed description of the
gauge-invariant Hilbert space with matter fields will be
given in a future publication.

IV. DIHEDRAL GAUGE THEORY ON A SMALL
PERIODIC LATTICE

In this section we consider pure gauge theory with gauge
groupG ¼ D4, the dihedral group with eight elements, on a
small 2 × 2 periodic lattice (see Fig. 2). We compute the
Hamiltonian in the gauge-invariant spin-network basis and
diagonalize it exactly. As remarked in Sec. III B, the
physical Hilbert space of this theory has dimension equal
to 8960 and it is not practical to store the gauge-invariant
states directly. Instead, we first compute numerically the
basis of invariant states at a site for all possible combina-
tions of irreps assigned to the four links attached to the site
[i.e. we compute the coefficients ψ in Eq. (36)]. Using these
coefficients we then compute the matrix elements of the
electric and magnetic Hamiltonians separately in the spin-
network basis (38). The electric Hamiltonian is diagonal,
and the magnetic Hamiltonian is off diagonal. In units of
λE þ λB the Hamiltonian can be written as H ¼
ð1 − λÞHE þ λHB for λ ∈ ½0; 1�, where λ ¼ λB=ðλE þ λBÞ.

TABLE II. Dimension of the physical subspace of D4 gauge
theory on some small lattices in 2þ 1 dimensions with different
boundary conditions (BCs), compared to the dimension of the
total Hilbert space. L is the number of links and V is the number
of vertices. Numbers above 106 are approximated values.

Size BCs L V L − V dimHphys dimH

2 × 2 Open 4 4 0 5 4096
Periodic 8 4 4 8960 1.6 × 107

2 × 3 Open 7 6 1 28 2.1 × 106

Periodic 12 6 6 536576 6.9 × 1010

3 × 3 Open 12 9 3 1216 6.9 × 1010

Periodic 18 9 9 2.7 × 108 1.8 × 1016
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In practice, for each λ, H is a 8960 × 8960 matrix. As
expected for spin-network states [59], we find H to be very
sparse: less than 1% of the elements are nonzero.
The electric and magnetic Hamiltonians were chosen as

in Eq. (13). In particular, we chose hB ¼ −2trρ4 where ρ4 is
the two-dimensional irrep of D4 and considered the three
different choices of the set Γ for hE described in Sec. II B 2.
These are Γ1 ¼ fr; r3; s; r2sg, Γ2 ¼ fr; r3; s; rs; r2s; r3sg,
and Γ3 ¼ fr; r2; r3g. We recall that the electric Hamiltonian
is twofold degenerate on each link with the choice of Γ3 but
is not degenerate with Γ1 or Γ2. The choice of Γ2, unlike the
other two, gives rise to a Lorentz-invariant theory.
The results of the exact diagonalization are shown in

Fig. 3. The ground state energy and the ground state
expectation values of the electric and magnetic

Hamiltonians are shown in Figs. 3(a)–3(d), respectively.
The qualitative picture is rather similar in all three cases,
with the electric energy increasing with λ and the magnetic
energy decreasing with λ. The ground state energies
coincide at λ ¼ 0, because hE always has a zero eigenvalue,
and at λ ¼ 1 where the Hamiltonian reduces to HB, which
is the same in the three cases. The plaquette Wilson loop is
equal to HB apart from an overall prefactor, and therefore
its behavior is also given by Fig. 3(d). We note that our
data for the ground state energies agree with that obtained
in [63] with a different method.
The difference in energy between the first two states

E1 − E0 is shown in Figs. 3(e) and 3(f). The difference
E1 − E0 coincides with the energy gap (in finite volume)
except where there are degenerate ground states, in which

FIG. 3. Exact diagonalization results for D4 gauge theory on a 2 × 2 periodic lattice in the gauge-invariant basis, for three different
choices of generating set Γ, i.e. Γ1 ¼ fr; r3; s; r2sg (solid blue), Γ2 ¼ fr; r3; s; rs; r2s; r3sg (relativistic, dashed orange), and Γ3 ¼
fr; r2; r3g (degenerate, dotted green). (a) Ground state energy. (b) Fidelity susceptibility. (c),(d) Ground state expectation values of the
electric and magnetic Hamiltonians. (e),(f) Energy difference between the first two energy levels.
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case E1 − E0 ¼ 0. Ground state degeneracy occurs in all
three cases at λ ¼ 1 and, for Γ3, also at λ ¼ 0. For Γ3, the
ground state degeneracy at λ ¼ 0 is lifted at any λ > 0 but
the scale of the gap remains much smaller than in the other
two cases. In all three cases we recognize a transition region
at λ ∼ 0.6–0.8 (depending on Γ), in which the ground state
quickly evolves from minimizing the electric energy to
minimizing the magnetic energy. For Γ1 and Γ2, at the
transition the gap rapidly becomes very small, while for Γ3

it is always close to zero except in the transition region,
where it peaks.
One possible way to locate the transition point is to

identify it as the point of sharpest variation of hHEi and/or
hHBi (i.e. the maximum of the absolute value of their
derivative with respect to λ). With this identification, the
transition points given by either hHEi or hHBi coincide at
λ�1 ¼ 0.67ð1Þ and λ�2 ¼ 0.76ð1Þ for Γ1 and Γ2, but show a
small difference for Γ3, at λ�3;E¼0.63ð1Þ and λ�3;B¼0.61ð1Þ.
Alternatively, calling jψ0ðλÞi the ground state of HðλÞ,
one can look at the fidelity susceptibility [64]

χðλÞ ¼ −
∂
2

∂ϵ2
log jhψ0ðλÞjψ0ðλþ ϵÞij2jϵ¼0; ð46Þ

which is expected to peak at the transition [65]. Figure 3(b)
shows χðλÞ for the three cases and its peak identifies
the transition point as λ�1;χ ¼ 0.67ð1Þ, λ�2;χ ¼ 0.76ð1Þ, and
λ�3;χ ¼ 0.62ð1Þ, in agreement with the previous method.
Overall, these results point toward the expected picture

of a two-phase structure for all three cases. The data for Γ1

and Γ2 are consistent with the usual picture of a confining
phase at small λ and a deconfined phase at large λ. For Γ3,
the structure of the first few states is rather different and it is
not clear whether it would be consistent with the inter-
pretation of this phase as confining. Of course, due to the
small volume these results are only qualitative and pre-
liminary; a study with larger volumes would be required in
order to properly establish the phase structure. However,
they point to the possibility that theories with electric
degeneracy may display different behavior and phase
structure compared to those with no electric degeneracy.

V. CONCLUSIONS

In this work we considered Hamiltonians for gauge
theories with a finite gauge group and we have shown that
the electric term may be interpreted as a natural Laplacian
operator on the finite group, constructed as the graph
Laplacian of its Cayley graph. The choice of generating
set of the Cayley graph has a simple relation with the
ground state degeneracy of the electric Hamiltonian.
We have also given careful consideration to the various
choices involved in constructing a finite-group gauge
theory and their consequences. Independent from the
choice of Hamiltonian, we have shown that the physical,

gauge-invariant Hilbert space of pure gauge theories may
be explicitly described in terms of spin-network states,
which are particularly suitable for finite groups. This also
allows us to derive a simple formula to compute the
dimension of the physical Hilbert space on an arbitrary
lattice. This is especially useful to quantify how much
resources can be saved by working directly in the physical
Hilbert space. Using the spin-network basis, we diagonal-
ized D4 gauge theory on a small periodic lattice with
different Hamiltonians. Due to the small system size, these
results are only suggestive, but they point to the possibility
that theories with a degenerate electric Hamiltonian may
have a different phase structure than commonly expected.
The methods employed in this work may be extended

in several directions. The graph Laplacian construction
may be adapted to those approaches where a Lie group
is discretized to a finite subset, not necessarily a
subgroup [66]. In that case the finite subset may be seen
as a weighted graph, with the edge weights representing the
distance between group elements in the parent Lie group.
Another aspect which would be interesting to explore is the
possibility of extending the Cayley graph construction to the
case of improved electric Hamiltonians [67] and investigat-
ing their possible degeneracy.
As we have seen, working directly in the gauge-invariant

basis reduces the size of the Hilbert space and implements
Gauss’s law exactly, at the expense of higher complexity
of the Hamiltonian. It would be worthwhile to explore
whether the gauge-invariant basis can be efficiently imple-
mented, for example in a quantum circuit. It is also possible
to extend the spin-network basis to gauge theories coupled
to matter fields, and we will treat this case in a future
publication.
Finally, it would be very interesting to explore the

possibility of a nonstandard mechanism to obtain a con-
tinuum limit for finite-group gauge theories; for example,
this is possible in quantum link models via the D-theory
formulation [68,69].
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APPENDIX A: SOME GROUPS OF INTEREST

1. The cyclic groups ZN gauge theory

The cyclic group ZN is an Abelian group of order N. It is
generated by one element ξ, which thus satisfies ξN ¼ 1.
Thus ZN ¼ f1; ξ; ξ2;…; ξN−1g. Since ZN is Abelian, its
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conjugacy classes are singlets, i.e. it has N conjugacy
classes of one element; moreover, it has N inequivalent
irreps, all of which are one dimensional,

ρjðξkÞ ¼ ωkj
N ; j ¼ 0; 1;…; N − 1; ðA1Þ

withωN ¼ e2πi=N . The bases fjξkig and fjjig are related by

jji ¼
XN−1

k¼0

hξkjjijξki ¼ 1ffiffiffiffi
N

p
XN−1

k¼0

ωkj
N jξki; ðA2Þ

which is just the discrete Fourier transform.

2. The dihedral groups DN

The dihedral groups DN are non-Abelian groups of
order 2N. They are subgroups of O(2), and they are
generated by a rotation r and a reflection s, which satisfy
rN ¼ s2 ¼ 1 and srs ¼ r−1. We describe in more detail the
dihedral group D4 of order 8. Its elements are D4 ¼
f1; r; r2; r3; s; rs; r2s; r3sg and it has five conjugacy
classes, f1g; fr; r3g; fr2g; fs; r2sg; frs; r3sg. It has five
irreducible representations, which we number from j ¼ 0
(trivial representation) to j ¼ 4. All the irreps are one
dimensional except j ¼ 4, which is two dimensional and
faithful. The character table is shown in Table III.
As the j ¼ 4 is the only faithful irrep, it is a natural

choice for the magnetic Hamiltonian.

APPENDIX B: PROOFS

1. Degeneracy of electric Hamiltonian

As discussed in Sec. II, the degeneracy of the electric
Hamiltonian given by the finite-group Laplacian Δ is
directly related to the structure of the Cayley graph. In
particular, it is a standard result that the graph Laplacian
always has a zero mode and its degeneracy equals the
number of connected components of the graph [50]. Here
we show that the Cayley graph is connected if and only if
its generating set Γ generates the whole group. If instead
hΓi ≠ G, then the Cayley graph splits into connected
components identified with the cosets of hΓi in G; thus
the degeneracy of the finite-group Laplacian Δ
equals jGj=jhΓij.

Any subset Γ ⊂ G generates a subgroup hΓi < G.
The right cosets of hΓi are of the form hΓih for h in G.
Since cosets partition the group, any two group elements g1
and g2 will belong to some coset, say g1 ∈ hΓih1 and
g2 ∈ hΓih2. We want to show that there is an edge in the
Cayley graph between group elements g1 and g2 if and only
if they are in the same coset, i.e. hΓih1 ¼ hΓih2. The fact
that gi ∈ hΓihi means that gi ¼ kihi for some ki ∈ hΓi.
Moreover, there is an edge between g1 and g2 if and only if
g1g−12 ¼ k1h1h−12 k2 ∈ Γ. But since ki ∈ hΓi this is equiv-
alent to saying that h1h−12 ∈ hΓi, which is equivalent to
hΓih1 ¼ hΓih2. This concludes the proof.

2. Counting of invariant states

In deriving Eq. (41) we used the fact that for a generic
representation ρ, the dimension of the space of invariant
vectors is given by

dim InvðρÞ ¼ 1

jGj
X
g∈G

χρðgÞ: ðB1Þ

If ρ is a nontrivial irreducible then the corresponding
character sums to zero [46] and there are no invariant
states. This is to be expected since, by definition, irreduc-
ible representations have no nontrivial invariant subspaces,
but any invariant vector would span an invariant subspace.
Here we provide a proof of the above formula. If v is an

invariant vector for the representation ρ, by definition it
satisfies ρðgÞv ¼ v for all g ∈ G. Now we construct a
projector onto the subspace of invariant vectors. We define
the averaging map Av∶ Vρ → Vρ,

AvðvÞ ¼ 1

jGj
X
g∈G

ρðgÞv: ðB2Þ

The averaging map is the projector onto the subspace of
invariant vectors. In fact, given an arbitrary vector v, we see
that AvðvÞ is invariant because

ρðgÞAvðvÞ ¼ 1

jGj
X
h∈G

ρðghÞv ¼ 1

jGj
X
h∈G

ρðhÞv ¼ AvðvÞ:

ðB3Þ

Therefore, Av maps the representation space to the sub-
space of invariant vectors Av∶ Vρ → InvðVρÞ. Moreover,
if v is invariant, then AvðvÞ ¼ v, and more generally,
Av2 ¼ Av by a similar calculation. This means that Av is a
projector onto the subspace of invariant vectors. As usual,
the size of projected subspace is given by the trace of the
projector, dim InvðρÞ ¼ trAv, which reproduces the above
formula.

TABLE III. Character table of D4.

f1g fr; r3g fr2g fs; r2sg frs; r3sg
χ0 þ1 þ1 þ1 þ1 þ1
χ1 þ1 −1 þ1 þ1 −1
χ2 þ1 þ1 þ1 −1 −1
χ3 þ1 −1 þ1 −1 þ1
χ4 þ2 0 −2 0 0
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