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Quantum Fisher information and multipartite entanglement in spin-1 chains
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In this paper, we study the ground-state quantum Fisher information (QFI) in one-dimensional spin-1 models,
as witness to multipartite entanglement. The models addressed are the bilinear-biquadratic model, the most
general isotropic SU(2)-invariant spin-1 chain, and the XXZ spin-1 chain, both with nearest-neighbor interac-
tions and open boundary conditions. We show that the scaling of the QFI of strictly nonlocal observables can
be used for characterizing the phase diagrams and, in particular, for studying topological phases, where it scales
maximally. Analyzing its behavior at the critical phases, we are also able to recover the scaling dimensions of the
order parameters, both for local and string observables. The numerical results have been obtained by exploiting
the density-matrix renormalization-group algorithm and tensor network techniques.
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I. INTRODUCTION

In addition to being a crucial resource for quantum-
enhanced metrology [1] and quantum computation [2],
entanglement has been used to characterize quantum phases
and quantum phase transitions (QPTs) in many-body models,
particularly for low-dimensional systems, and has been impor-
tant also to uncover exotic states of matter such as topological
spin liquids [3] or to describe many-body localization [4].

Bipartite entanglement has been the primary focus in the
literature [5], with the area law [6] serving as a benchmark for
relating the amount of entanglement between two partitions
of a quantum many-body system to the surface area between
the blocks [7,8]. It has been proved [9] that the ground state
of some spin chains should exhibit multipartite entanglement
(ME), but somehow this topic has received less attention [9],
despite the fact that many-body quantum states are far more
complex than what can be captured with bipartite entangle-
ment only.

A possible estimator of multipartite entanglement is quan-
tum Fisher information (QFI), a quantity which is introduced
in the context of the problem of phase estimation in metrol-
ogy [10] and is of use in the study of the sensitivity of
atomic interferometers beyond the shot-noise limit [11]. The
QFI associated with local operators has recently been used
to observe ME in models exhibiting Ginzburg-Landau-type
quantum phase transitions [12] and in spin systems such as
the Ising, XY , and Heisenberg models [12–14] also at finite
temperature [15], where ME is expected to diverge at criti-
cality. It has been pointed out, however, that the use of local
operators in this method fails to detect ME at topological
quantum phases and transitions. To address this issue, QFI-
based methods need to be extended to include also nonlocal
operators, as first outlined in Refs. [16–18].

In this paper, we are going to study the ME in two paradig-
matic spin-1 systems with nearest-neighbor interactions: the
bilinear-biquadratic (BLBQ) model and the XXZ model, two

models with a rich phase diagram which exhibit a topolog-
ical Haldane phase. More specifically, we show that QFI of
nonlocal order parameters (such as string-order parameters
[19]) gives indeed information about the ME of the ground
state in the different phases of the models. Then, taking also
in consideration QFI of local spin observables, we are able
to classify all phases of the model as well as to calculate
universal critical exponents at phase transitions.

The paper is structured as follows: In Sec. II, we briefly
review ME and QFI, and their relationship. In Sec. III we
discuss the BLBQ model; after describing its phase diagram,
we analyze the scaling of the QFI with respect to some se-
lected operators. The same is done in Sec. IV for the XXZ
model. A summary of the obtained results is discussed in the
conclusions in Sec. V, with some possible outlooks for future
research.

II. QUANTUM FISHER INFORMATION
AND MULTIPARTITE ENTANGLEMENT

In this section, we concisely review the concepts of ME
and QFI, elucidating their relationship [1,20].

A pure state of N particles is k producible if it can be
written as

|ψk-prod〉 =
M⊗

l=1

|ψl〉, (1)

where |ψl〉 is a state with Nl � k particles and M is the number
of parties in which it is possible to split up the state so that∑M

l=1 Nl = N .
A state is k entangled if it is k producible but not (k −

1) producible. Therefore, a k-particle entangled state can be
written as a product |ψk〉 which contains at least one state |ψl〉
of Nl = k particles which does not factorize further. So, in this
notation, a state |ψ1-ent〉 is fully separable while a state |ψN-ent〉
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is maximally entangled. These definitions can be extended to
mixed states via convex combination.

QFI is a fundamental quantity in the context of phase esti-
mation and is crucial to prove that entanglement can increase
the sensitivity of an interferometer beyond the shot noise
up to the Heisenberg limit. QFI for a general observable Ô
and a mixed probe state ρ = ∑

i pi|φi〉〈φi|, with pi > 0 and∑
i pi = 1, is given by

FQ[ρ, Ô] = 2
∑
i,i′

(pi − pi′ )

pi + pi′
|〈φi|Ô|φi′ 〉|2. (2)

In the case of a pure state |ψ〉 the QFI has a simple expression
and is directly proportional to the variance of the operator:

FQ[|ψ〉, Ô] = 4(�Ô)2 ≡ 4(〈Ô2〉 − 〈Ô〉2). (3)

For separable states ρsep, the FQ[ρsep, Ô] is bounded from
above [11]:

FQ[|ψ〉sep, Ô] � N (λmax − λmin) (4)

where λmax and λmin are the maximum and minimum eigen-
value of Ô. This is not a fundamental limit, since it can be
surpassed by using proper entangled states. Indeed, for gen-
eral probe pure states |ψ〉 of N particles, we have [11,21]

FQ[|ψ〉, Ô] � N2(λmax − λmin)2, (5)

where the equality is saturated by only maximally entangled
states. This gives the Heisenberg limit in phase estimation and
quantum interferometer theory.

There is a direct relationship between ME and QFI, as it has
been show in Ref. [20]. For any k-producible states |ψ〉k-prod

of N particles, the QFI is bounded by

FQ[|ψ〉k-prod, Ô] � sk2 + r2, (6)

where s = �N/k� (the integer part of N/k) and r = N − sk.
Therefore, a violation of (6) will indicate a (k + 1)-particle
entanglement. The quantity FQ in (6) has been rescaled by a
factor (λmax − λmin)2, which in the case of spin-1 operators is
equal to four. By a straightforward calculation is possible to
see that this bound is saturated by the product of s GHZ states
of k particles and a GHZ state with the remaining r particles:

|ψ〉 =
s⊗
i

( |λmax〉⊗k + |λmin〉⊗k

√
2

)
i

( |λmax〉⊗r + |λmin〉⊗r

√
2

)
.

(7)
If we introduce the QFI density

fQ[|ψ〉, Ô] ≡ FQ[|ψ〉, Ô]/N, (8)

then (6) can immediately be read as

fQ[|ψ〉k-prod, Ô] � k, (9)

where, for simplicity, we put the term s = N/k. It has been
proved that fQ > 1 is a sufficient condition for multipartite
entanglement [21].

In this paper, the observable we consider are constructed
by using the spin-1 operators Sα

i , where α = x, z, and their
nonlocal counterparts S̃α . The latter are defined as follows:

S̃x
j = Sx

j

(
eiπ

∑
l> j Sx

l
)
, S̃z

j = (
eiπ

∑
l< j Sz

l
)
Sz

j . (10)

Takhatajan-Babujian (β = 1)

Lai-Sutherland (β = −1)

Heisenberg (β = 0)

AKLT (β = −1/3)

Dimer

Haldane
Ferro

Trimer

θ = arctan(β)

FIG. 1. Phase diagram of BLBQ model on a circle, parametrized
by θ , with some remarkable points: the AFM Heisenberg model
the AKLT point, and the critical points (Takhtajan-Babujian and
Lai-Sutherland). In terms of β and J , the right half corresponds to
a positive J and the left half to a negative J , while β = tan θ .

These operators have been obtained by applying a nonlocal
unitary transformation on the spin degrees of freedom. For
more details regarding the origin of this transformation, we re-
fer to the discussion about the Affleck-Kennedy-Lieb-Tasaki
(AKLT) model in Appendix.

III. BILINEAR-BIQUADRATIC MODEL

In this section we consider the bilinear-biquadratic
(BLBQ) model on a chain of N sites:

H = J
N∑

i=1

[Si · Si+1 − β(Si · Si+1)2], (11)

where Si = (Sx
i , Sy

i , Sz
i ) is the spin-1 operator for site i, J is the

nearest-neighbor coupling, and β is a real parameter express-
ing the ratio between the bilinear and biquadratic terms. This
is the most general SU(2)-invariant isotropic spin-1 Hamil-
tonian with nearest-neighbor interactions only. Often in the
literature the Hamiltonian (11) is written as

H = J ′
N∑

i=1

[cos (θ )Si · Si+1 − sin (θ )(Si · Si+1)2], (12)

which can be obtained by setting J = J ′ cos(θ ) and β =
tan(θ ), with the angular parameter θ ∈ [−π, π ]. By fixing
J ′ = 1, the phase diagram can be drawn by varying the angular
parameter θ , as shown in Fig. 1.

In the following we describe the phases of the BLBQ
model and some remarkable points.

A. Phase diagram

The Haldane phase corresponds to the region −1 < β < 1
and J > 0: here the system is massive, with a unique ground
state and exponentially decaying correlation functions [22].
We recognize the antiferromagnetic Heisenberg model for
β = 0 [23–25]. For β = −1/3 we recover the AKLT model,
whose ground state is a valence-bond state (VBS), in which
each spin-1 is thought of as made of two 1/2 spins that couple
with the spins of neighboring sites in a singlet (entangled)
state. A pictorial image of the AKLT state for a four sites chain
is given in the upper panel of Fig. 2.
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spin–1
spin– 1

2
entangled
single pair

AKLT state

Dimer state

FIG. 2. Example of states of the BLBQ model: every site (light
blue oval) contains two spin-1/2 particles (blue dots) and each singlet
state of spin-1/2 particles is represented with a thick black line.
(upper panel) Entangled pair structure of the AKLT’s ground state in
the VBS representation. (lower panel) An example of spin-1 dimer
state in the VBS representation with six sites.

The ground state has an exact description as a matrix
product state, which is very useful for performing exact calcu-
lations. In particular, it can be shown that the local correlation
functions have an exponential decay (see Appendix).

The dimer phase corresponds to β > 1 and J > 0, or β <

−1 and J < 0: the system has a twofold degenerate ground
state and a small excitation gap [26]. The degeneracy is due to
the broken translation symmetry, since neighboring spins tend
to be coupled in pairs. A good approximation of the ground
state in the whole phase is given by the dimer state [19]

|d〉± =
L/2⊗
i=1

1√
3

(|+〉2i|−〉2i±1 + |−〉2i|+〉2i±1 − |0〉2i|0〉2i±1),

(13)
which is shown in the lower panel of Fig. 2. Haldane
and Dimer phases are separated by the so-called Takhtajan-
Babujian critical point, for β = 1 and J > 0. Here the
Hamiltonian is integrable by means of Bethe ansatz tech-
nique [27,28] and its universality class is that of a SU(2)k

Wess-Zummino-Witten conformal field theory with k = 2 and
therefore with central charge c = 3/2 [29].

In the region β < −1 and J > 0 there is another antifer-
romagnetic phase, called the trimer phase, since the ground
state tends to be invariant under translations of three sites. This
is a gapless phase [30]. At β = −1, it is separated from the
Haldane phase by a continuous phase transition. This point
corresponds to the so-called Lai-Sutherland model, which
has an enhanced symmetry to SU(3), the Hamiltonian being
equivalent to

N−1∑
i=1

Si · Si+1 + (Si · Si+1)2 = N

3
+ 1

2

N−1∑
i=1

8∑
a=1

λa
i , (14)

where λa are the Gell-Mann matrices, the eight generators of
SU(3) algebra. It is in the universality class of the SU(3)k

Wess-Zummino-Witten conformal field theory with k = 1
[29,31]. Here we will not consider the last phase present in
Fig. 1, namely, the ferromagnetic phase, which corresponds
to an ordered and separable ground state.

The BLBQ model has a hidden symmetry (see Ap-
pendix) that forces us to introduce nonlocal order parameters
(NLOPs) [19] to classify all phases. NLOPs, which are also
called string order parameters, are defined as follows:

C̃α = lim
r→∞

〈
Sα

0

(
r−1∏
k=1

eiπSα
k

)
Sα

r

〉
, (15)

where α = x, y, z. The NLOPs C̃α have a nonzero expectation
value only in the Haldane phase.

In the following, we examine both the expectation value
and the QFI of the nonlocal operator

Õz ≡
N∑

j=1

S̃z
j, S̃z

j ≡ (
eiπ

∑
l< j Sz

l Sz
j

)
(16)

evaluated on the ground state |ψ〉 in the different phases of the
BLBQ model. With some algebra one finds

〈Õz〉 =
N∑

l=1

〈(
l−1∏
j=1

�( j)

)
Sz

l

〉
(17)

and

〈(Õz )2〉 =
N∑

l=1

〈(
Sz

l

)2〉 − 2
∑
l<m

〈
Sz

l

(
m−1∏

j=l+1

�( j)

)
Sz

m

〉
, (18)

where we have used

�(l ) = eiπSz
l , �2(l ) = I, and Sz

l �(l ) = −Sz
l . (19)

These expressions are used to calculate the QFI,

FQ[|ψ〉, Õz] = [〈ψ |(Õz )2|ψ〉 − 〈ψ |Õz|ψ〉2], (20)

which coincides with (3) but for the factor four that we have
neglected since we are dealing with spin-1 operator with
λmax = −λmin = 1.

B. Numerical results

To rewrite (18), it is useful to define the following N × N
matrix:

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

〈(
Sz

1

)2〉 〈
Sz

1Sz
2

〉 〈
Sz

1�(2)Sz
3

〉 · · · 〈
Sz

1�(2) · · · �(N − 1)Sz
N

〉
0

〈(
Sz

2

)2〉 〈
Sz

2Sz
3

〉 · · · 〈
Sz

2�(3) · · · �(N − 1)Sz
N

〉
0 0

〈(
Sz

3

)2〉 · · · · · ·
· · · · · · · · · · · · · · ·
0 0 0 · · · 〈Sz

N−1Sz
N 〉

0 0 0 · · · 〈(
Sz

N

)2〉

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,
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TABLE I. Numerical values of the fitting parameters at different
points in the Haldane phase of the BLBQ model, where the QFI
density has been fit against a power law.

BLBQ model, Haldane phase
fQ(|ψβ〉, Õz ) = q + bN δ

β q b δ

−1/3 0.225 ± 0.003 0.4441 ± 0.0001 1.0002 ± 0.0001
0 0.35 ± 0.05 0.355 ± 0.002 1.002 ± 0.003
1/3 1.122 ± 0.009 0.197 ± 0.004 0.9999 ± 0.0005
2/3 1.55 ± 0.04 0.111 ± 0.02 0.997 ± 0.001
1 −3.632 ± 0.004 3.132 ± 0.002 0.252 ± 0.001

where each matrix element Mi j is given by

Mi j =
{〈

Sz
i �(i + 1) · · ·�( j − 1) Sz

j

〉
if i � j

0 otherwise.
(21)

Similarly, for the term (17) we can define the N-dimensional
vector

V = [〈
Sz

1

〉
,
〈
�(1)Sz

2

〉
, . . . ,

〈
�(1) · · · �(N − 1)Sz

N

〉]
, (22)

such that 〈Õz〉 turns out to be the sum of all its elements.
In this way, the QFI can be written as

FQ[|ψ〉, Õz] =
N∑

i=1

Mii − 2
N−1∑
i=1

N∑
j>i

Mi j −
(

N∑
i=1

Vi

)2

. (23)

Simulations to compute the elements of M and V can be easily
implemented numerically. The states can be represented with
matrix product states (MPSs) and the ground states can be
obtained with the DMRG algorithm. The numerical simula-
tions have been done using the ITensor library [32,33] and
the DMRG computations have been performed with bond
dimensions up to χ = 300 and truncation error cutoff set to
10−12 for a higher precision.

To investigate the scaling of the QFI density fQ = FQ/N ,
we have looked for a function of the form q + bNδ (for the
Haldane and critical points) or q + b ln N (for the dimer and
trimer phases), for system sizes up to N = 120. However,
when the data showed a particularly flat trend, we fit fQ

against a constant function in order to minimize the standard
error on the parameters.

The results of the numerical calculations are summarized
in Table I for the Haldane phase and in Table II for the
dimer and trimer phases. The fit and their errors are com-
puted using standard methods, like the one provided by
Mathematica [34].

To analyze these results, let us start from the AKLT point,
where the ground state is known exactly. To calculate the QFI
analytically, we can exploit Lemma 2.6 of Ref. [22], extended
to a string observable. Let O be an observable and N the
system’s size; then for any l � N such that the support of O is
contained in l , we have

lim
N→∞

〈
�N

α,β |O|�N
α,β

〉〈
�N

αβ

∣∣�N
αβ

〉 =
∑

α,β

〈
�l

α,β |O|�l
α,β

〉∑
α,β

〈
�l

αβ

∣∣�l
αβ

〉 , (24)

TABLE II. Numerical values of the fitting parameters at different
points in the dimer and trimer phases of the BLBQ model, where the
QFI density has been fit against a logarithm function.

BLBQ model
f (|ψβ〉, Õz ) = q + b ln N

Dimer phase Trimer phase

β q b β q b

2 0.81 ± 0.04 0.58 ± 0.01 −2 0.98 ± 0.06 0.19 ± 0.01
4 1.03 ± 0.01 0.405 ± 0.003 −4 1.08 ± 0.06 0.12 ± 0.01
8 1.34 ± 0.05 0.24 ± 0.01 −8 1.11 ± 0.05 0.09 ± 0.01
∞ 1.39 ± 0.04 0.18 ± 0.01

where |�N
α,β〉 is one of the four ground states of the AKLT

model (see Appendix). This gives us an operational way to an-
alytically calculate the terms of the QFI on the infinite volume
ground state from (23) for a finite chain. It turns out that each
diagonal term is equal to 2/3 while each of the N (N − 1)/2
off-diagonal terms quickly approach to −4/9 [i.e., the value of
NLOP (15) defined in the asymptotic limit] when N becomes
larger. As the last addend in (23) is negligible, the QFI density
for a system of N sites scales linearly as

fQ(|ψAKLT〉, Õz )  2
9 + 4

9 N, (25)

as confirmed by numerical results in Table I. The same ar-
gument holds for the Heisenberg point, where the asymptotic
value of its NLOP is known to be 0.36 [35]. Furthermore,
we observe that the QFI keeps a linear scaling in the whole
Haldane phase, as shown in Fig. 3(a). One can notice that the
slope of the curves progressively decreases as we move away
from the AKLT point.

When moving outside the Haldane phase, the linear scaling
in the dimer and trimer phase becomes sublinear, as seen in
Fig. 3(b). In the dimer phase, the numerical results can be
compared with the analytical calculations performed on the
dimer state (13) which can be considered a good approxi-
mation, as mentioned in Sec. III. The resulting QFI density
fQ(|d〉, Õz ) yields 4/3, corresponding to a two-partite entan-
glement structure, which is expected from the state (13) being
a two-site product state. Then, assuming that Õz is a good
choice for the whole dimer phase, we can appreciate how good
this approximation is in the different points of this phase by
comparing the various scaling with the exact value 4/3. As we
show in Table II and Fig. 3(b), we get that a good function that
fits the data is of the form q + b ln N , with b that progressively
decreases when β goes to infinity.

We want to stress the crucial difference between the Hal-
dane phase and the dimer and trimer ones. From the point of
view of QFI criterion, the multipartite entanglement structure.
In other words, the k in (9) grows linearly with the system
size in the Haldane phase while in the other two phases the k
grows sublinearly. This may suggest that the ground state in
the Haldane phase may not be factorizable in blocks of finite
length in the thermodynamic limit, and this can be shown us-
ing only nonlocal operators. However, we cannot have direct
information on the exact value of k using only Õz, because we
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FIG. 3. Scaling behavior of the QFI density fQ at different points of phase diagram using Õz in (16): (a) In the Haldane phase fQ grows
linearly, with the highest slope in correspondence of the AKLT point β = −1/3. (b) In the dimer and trimer phases fQ grows logarithmically.
(c) Values of fQ as a function of β with system size N = 30. The blue circle is the AKLT point where fQ is maximal, while the two blue
squares correspond to the phase-transition points.

cannot be sure that this is the operator saturating the ground
state QFI.

Let us now analyze the scaling behavior at the transition
points β = ±1. The spin-spin correlations are asymptotically
given by the fundamental WZW primary fields, leading to the
prediction that, in an infinite system, the dominant antiferro-
magnetic correlations decay as a power law:

〈Sα
0 Sα

r 〉 ∼ (−1)r

|r|η , (26)

where η = 2� and the scaling dimension � = h + h̄ can be
obtained from the primary field scaling dimension for a gen-
eral SU(n) level k WZW model [36]:

h = h̄ = n2 − 1

2n(n + k)
. (27)

As we said in the previous sections, β = ±1 are described by
SU(2)2 and SU(3)1 conformal theories which means that their
values of η are equal to 3/4 and 4/3, respectively. We recover
this power-law scaling of correlators both for string and local
operators, as we show in Fig. 4.

For β = 1, the numerical data display small oscillations
between N even and odd, due to the double degeneracy that
emerges in the dimer phase. To increase the accuracy of the
fitting, we have decided to consider only the odd-numbered
sites, this however does not modify the value of the exponents
in the thermodynamic limit since these oscillations tend to
zero as N increases.

As shown in Ref. [12], the QFI density of one-dimensional
models at the critical point is supposed to scale as f (Oα ) ∼
NδQ (up to a nonuniversal prefactor and subleading correc-
tions) with δQ = 1 − 2�α , where �α is the scaling dimension
of the operator Oα . We can recover this result from our ap-
proach and numerical data as well. Indeed, considering that
the first sum in (23) goes as ≈N (so it brings just a constant
contribution in f ) and neglecting V (because we are at the
critical point), the only relevant contribution is given by the
sum of the off-diagonal terms in the M matrix. Exploiting (26)

in the continuum limit, we get

N−1∑
r′=1

N∑
r>r′

〈Sα
r′Sα

r 〉 −→
∫ N

1
dr′

∫ N

r′

dr

rη
∼ N2−η, (28)

so that

fQ(Oα ) ∼ N1−2�α

. (29)

The same holds for string operators up to a nonuniversal
prefactor and subleading corrections. It is evident now why
we get the expected numerical value δ  δQ = 1 − 2� = 1/4
for the string magnetization, as reported in Table I. A similar
reasoning can be put forward for the calculation of fQ(Oz

st ) of
the local staggered magnetization operator along the z axis,

FIG. 4. Power-law decay of correlation functions by using both
string (in blue) and local (in green) operators in the Takhtajan-
Babujian (upper panel) and Lai-Sutherland (lower panel) models.
The dots are the computed values, while the gray line is the
obtained fit.
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defined as

Oz
st =

N∑
j=1

(−1) jSz
j . (30)

Our numerical results for the calculation of the QFI density for
Oz

st yield: q = −3.770 ± 0.002, b = 3.201 ± 0.001, and δ =
0.244 ± 0.001. Thus, we are able to read the critical exponent
of the operator from its QFI.

At the Lai-Sutherland point β = −1, the numerical data
display small oscillations with a periodicity of three sites due
to the trimer configuration that merges for β < −1. Unfortu-
nately, from the data we observe, what is mostly probable is a
flat trend, but we are not able to distinguish a linear fit from
one that decreases exponentially or, like it should be in this
case, as a power law with a negative exponent. We believe
that the prefactors and subleading terms, which depend on N ,
might contribute to mask the predicted behavior at criticality.

IV. XXZ SPIN-1 MODEL

A. Phase diagram

The XXZ spin-1 chain is a well-studied quantum system
that exhibits an interesting phase diagram as a function of the
anisotropy parameter Jz. It has the following Hamiltonian:

H =
N−1∑
i=1

Jxy
(
Sx

i Sx
i+1 + Sy

i Sy
i+1

) + Jz
(
Sz

i Sz
i+1

)
, (31)

where we take Jxy = 1 and let Jz vary. It can also be considered
as a particular case of the so-called λ-D model [19], which
includes also an isotropy term of the form

∑N
i=1 D(Sz

i )2.
The quantum phase diagram of this Hamiltonian has been

extensively studied [37]. It includes the Haldane phase for
0 < Jz ≈ 1. A second-order phase transition occurs from the
Haldane phase to an antiferromagnetic (AFM) phase that be-
longs to the same universality class of the two-dimensional
(2D) Ising model with central charge c = 1/2. Various nu-
merical techniques, including Monte Carlo [38] and DMRG
[39,40], have determined the critical value: J (IS)

z = 1.186.
A Berezinskii-Kosterlitz-Thouless (BKT) transition occurs at
J (BKT)

z = 0 between the Haldane phase and a gapless dis-
ordered XY phase (−1 < Jz < 0). The value of J (BKT)

z is
theoretically predicted to be exactly zero by using bosoniza-
tion techniques [41]. Numerically, this has been verified via
finite-size scaling [42,43] and DMRG [39]. The entire XY
phase (including the BKT transition point) is a critical phase,
which has conformal symmetry with central charge c = 1.
Finally, at Jz = −1, a first-order phase transition from the XY
phase to a ferromagnetic (FM) phase takes place [37,40,44].
We will not examine in detail such ferromagnetic phase in the
following.

B. Numerical results

Given the symmetries of the Hamiltonian, we consider
the scaling behavior of the QFI density of local and string
operators along the x and z axes, including the staggered ones.
Those that show an extensive scaling, at least in some phases

FIG. 5. Trend of QFI densities in the phase diagram of the
XXZ model of size N = 30, with the string magnetizations Õz, Õx ,
and the local magnetization Ox

st. From left to right: ferromagnetic
(FM) phase, XY gapless phase, Haldane phase and antiferromagnetic
(AFM) phase. The critical points are located at Jz = −1, J (BKT)

z = 0,
and J (IS)

z = 1.186.

of the model, are the following:

Õz =
N∑

i=1

S̃z
i , Õx =

N∑
i=1

S̃x
i , Ox

st =
N∑

i=1

(−1)iSx
i , (32)

where, as usual, the operators with the tilde symbol are string
operators. Similarly to the previous section, the numerically
computed QFI density fQ is fit against the function fQ = q +
bNδ , or with a constant if the data present an extremely flat
trend.

In Fig. 5 we plot the shapes of the QFI densities of the
operators (32) in the different phases of the model for a chain
with N = 30 sites. The results of the fitting of the scaling with
N are given in Tables III–V and some details of the scaling are
reported in Fig. 5. Let us analyze each operator below.

The operator Ox
st takes its maximal value close to the

FM-XY transition point and then decreases progressively
moving toward the Haldane phase. In particular, analyzing
its scaling with N [see Fig. 6(a) and Table III], fQ reveals
a power-law behavior in the XY phase with the coefficient
δ = 0.8376 ± 0.0001 at Jz = −1/2 which gradually reduces

TABLE III. Numerical values of the fitting parameters of the QFI
density for the staggered magnetization Ox

st at different point of the
XXZ model.

XXZ model, staggered magnetization
f (|ψ(Jz )〉, Ox

st ) = q + bN δ

Jz q b δ

−1/2 0.231 ± 0.003 0.7041 ± 0.0002 0.8376 ± 0.0001
0 0.138 ± 0.003 0.797 ± 0.001 0.7574 ± 0.0002
1/2 −3.5 ± 0.5 2.8 ± 0.004 0.43 ± 0.01
1 3.77 ± 0.06
1.186 2.199 ± 0.009
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TABLE IV. Numerical values of the fitting parameters of the QFI
density for the x-string operator Õx at different points of the XXZ
model.

XXZ model, x-string operator
f (|ψ(Jz )〉, Õx ) = q + bN δ

Jz q b δ

−1/2 0.11 ± 0.04 0.829 ± 0.009 0.745 ± 0.002
0 0.131 ± 0.001 0.7992 ± 0.0002 0.7570 ± 0.0001
1/2 7.2 ± 0.3 1.26 ± 0.03 0.996 ± 0.002
1 0.16 ± 0.05 0.356 ± 0.004 1.008 ± 0.002
1.186 2.74 ± 0.05 1.65 ± 0.01 0.727 ± 0.001

(e.g., δ = 0.7574 ± 0.0002 at Jz = 0) until it vanishes for
Jz � 1.

Regarding the string operators (see Tables IV and V), it
is possible to observe that fQ(Õx ) has a power-law scaling
in the whole XY phase (including Jz = 0) where the fQ(Õz )
appears to be almost flat (δ = 0.138 ± 0.003). In the Haldane
phase, the QFI for both these operators shows a linear scaling
(δ  1) with a slope that increases with Jz, reaching the max-
imal values at Jz = 0.8 and Jz = 1, respectively. For Jz = 1
we recover the Heisenberg model where both have the same
scaling coefficients as expected in an isotropic point.

The data on QFI can be used to extract information about
the critical exponents of relevant operators at phase-transition
points and about correlation functions in general. At the crit-
ical point J (IS)

z , we predict that the scaling dimension of the
order parameter is � = 1/8, in accordance with the univer-
sality of the 2D Ising model, since δ = 1 − 2�  3/4. This
holds true for the string order operator Õx, see Table IV, and
the local staggered magnetization Oz

st. The latter is defined
similarly to Ox

st in (32), for which we obtained δ = 0.76 ±
0.01.

More generally, we can consider the asymptotic behavior
of local staggered and string correlation functions

Cα
st (r) = (−1)r

〈
Sα

0 Sα
r

〉
,

C̃α (r) =
〈

Sα
0

(
r−1∏
k=1

eiπSα
k

)
Sα

r

〉
, (33)

TABLE V. Numerical values of the fitting parameters of the QFI
density for the z-string operator Õz at different points of the XXZ
model.

XXZ model, z-string operator
f (|ψ(Jz )〉, Õz ) = q + bN δ

Jz q b δ

−1/2 0.989 ± 0.003
0 −3.1 ± 0.1 5.8 ± 0.1 0.138 ± 0.003
1/2 1.21 ± 0.04 0.058 ± 0.004 1.03 ± 0.01
1 0.16 ± 0.05 0.356 ± 0.004 1.008 ± 0.002
1.186 0.489 ± 0.007

which are known to have the following behavior for large r in
the (massive) Haldane phase [45]:

Cα = a0
e− r

a1√
r

, C̃α = a2 + a0
e− r

a1

r2
, (34)

where a0, a1, and a2 are fitting parameters and α = x, z as
usual, while at the transition point, they scale algebraically:

Cz = C̃x = a0

r1/4
, Cx = a0

e− r
a1

r1/4
, C̃z = a2 + a0

r2
. (35)

The data reported in the Tables III–V and Fig. 6 of the
fitting parameters of fQ are in agreement with these theoreti-
cal predictions. To understand the results, two comments are
necessary.

The first one is that in the Haldane phase and at the critical
points the only relevant contribution to the QFI density is due
to (18), i.e., the M matrix made by the spin-spin correlators.
The second one is that, as we said previously for the BLBQ,
from our data, it is not possible to distinguish the flat scaling
of fQ from an exponential or power-law decay with δ < 0.
Then, considering the correlations (34) and (35), we can un-
derstand that, for string operators in the Haldane phase, the
elements Mi j are going to approach a2. This leads to a fQ

that scales linearly, with the slope b  a2. From our compu-
tations we get δ equal to 0.757 ± 0.001 and 0.727 ± 0.001
for Oz

st and Õx, respectively, which is comparable to 1 − η, as
expected.

Finally, when −1 < Jz < 0, the system is in the XY phase.
In this extended area of critically, also called the “critical
fan,” the Hamiltonian can be replaced by the Hamiltonian of
a Gaussian model [46], which admits two primary operators
with conformal dimensions:

�1 = 1
8 , �2 = 1

4χ (Jz ), (36)

where χ is a function of the coupling Jz such that χ (0) =
1/2 and χ (−1) = 0. The explicit form of the function χ

depends on the details about how the lattice model can be
mapped to the Gaussian model at criticality. This means that
there exists one operator for which the critical index δ of
QFI densities will be constantly 3/4 and one with varying
between 3/4 and 1, respectively. We identify such operators
with Õx and Ox

st, respectively, as suggested by the data of
Tables III and IV: at Jz = 0 the values of their fitting pa-
rameters are extremely close to each other and close to 0.75;
moving toward Jz = −1/2, fQ(Õx ) remains fixed to a similar
value (δ = 0.745 ± 0.002) while fQ(Ox

st ) has δ = 0.8376 ±
0.0001 and the latter continues to increase, as suggested by
Fig. 5.

V. CONCLUSIONS AND OUTLOOKS

In this paper, we have shown how QFI is able to detect
multipartite entanglement (ME) in spin-1 chains with short-
range interactions. A key aspect in these calculations is the use
of string operators whereas the QFI relative to local operators
fails to detect ME, especially in the topological phases of
these models, i.e., the Haldane phase. For the BLBQ model,
given the symmetries of the Hamiltonian, we chose the string
magnetization along z and obtained an extensive behavior in
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FIG. 6. Scaling behavior of the QFI density of different operators at some points of interest: (a) staggered magnetization Ox
st (shades of

red); (b) x-string operator Õx (shades of green); (c) z-string operator Õz (shades of blue). Notice the abrupt change in the behavior for the string
operators Õx and Õz from J = 1 to J = 1.186, which can also be seen in Fig. 5.

the topological phase, signaling the divergence of ME with the
system size. The same applies to the Haldane phase of XXZ
model as well.

In the dimer and trimer phases we found a sublinear be-
havior; in particular for the dimer phase, we also propose to
use QFI density to estimate how well the two-site product
state is approximating the various ground states in this phase.
Furthermore, we recover the expected power-law scaling of
the QFI density for these one-dimensional (1D) models in the
critical phases. In fact, by knowing the critical exponent η of
the correlators or the scaling dimension � of the operator with
which the QFI is calculated, it is possible to predict how fQ

will scale at these critical points: δ = 1 − 2�.
From numerical simulation we obtained δ  0.25 in the

Takhtajan-Babujian point of BLBQ model and δ  0.75 in
the AFM-Haldane transition point of XXZ model as expected.
Throughout the “critical fan” (XY phase) of the XXZ model,
we observe a power-law behavior of fQ with two different
trends of δ: one fixed at the constant value of 3/4 (string
operator Õx), the other varying between 3/4 and 1 (stag-
gered magnetization Ox

st) in analogy to what was done in
Ref. [46].

We remark that QFI is useful for characterizing the dif-
ferent phases of a model, through its entanglement content.
On the other hand, it is not the most appropriate tool for
localizing the transition points, because it would require a
tedious analysis of how the scaling of the QFI changes close
to a critical point, having to include constant terms that often
complicate the fitting procedures.

In the light of these promising results, it would be interest-
ing to investigate whether it is feasible to use it for systems
with more complicated degrees of freedom, such as models
with higher symmetry groups [47] or with long-range interac-
tions [48].
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APPENDIX: THE AFFLECK-KENNEDY-
LIEB-TASAKI MODEL

The AKLT model is the projection point at β = −1/3,
where the Hamiltonian can be expressed as a sum over the pro-
jection operators Pj (i, i + 1). Each projector acts on a pair of
interacting spins for a given value of the total spin j = 0, 1, 2.
Thus, it can be written as

HAKLT = −2

3
NJ + 2J

N∑
i=1

P2(i, i + 1), (A1)

where

P2(i, i + 1) = 1
3 + 1

2

(
Si · Si+1 + 1

3 (Si · Si+1)2
)
. (A2)

As shown in Ref. [22], the system can be thought of as
made up of two spin-1/2 variables for each site. By introduc-
ing the valence bond basis, it is possible to build the ground
state, called a valence bond solid (VBS), so that in the chain
there is always a bond between two neighboring spins (see
upper panel of Fig. 2).

The VBS state |VBS〉 satisfies

P2(i, i + 1)|VBS〉 = 0 ∀ i. (A3)

In the spin-1/2 computational basis, ψ1 = |0〉, ψ2 = |1〉, we
can construct an orthogonal basis for the s = 1 state space, by
taking the symmetrized tensor products:

ψαβ = 1√
2

(ψα ⊗ ψβ + ψβ ⊗ ψα ). (A4)

Then, in order to contract a pair of spin-1/2s to form a singlet,
we use the Levi-Civita tensor of rank two:

�αβ = εγ δψαγ ⊗ ψδβ, (A5)

where the indices α and β refer to the outer spin-1/2’s. It is
now easy to generalize the construction for a chain of length
N :

�αβ = εβ1α2 · · · εβN−1αN ψαβ1 ⊗ ψα2β2 ⊗ · · · ⊗ ψαN β. (A6)

The AKLT model has exponentially decaying correlations,
and this applies to the whole Haldane phase. In fact, this can
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be shown by computing the two-point correlation function in
the limit N → ∞, which yields

lim
N→∞

〈�|Sa
0Sb

r |�〉 = δab(−1)r 4
3 3−r, (A7)

showing, as anticipated, an exponentially decaying correlation
function with correlation length ξ = ln(3)−1. Therefore, one
may conclude that there is no order in this phase but, as we
will see, a different kind of hidden order is actually there. We
are going to show this fact on the valence bond state.

As it can be easily understood from Fig. 2, in a finite chain
the ground state of AKLT model is fourfold degenerate due
to the effective free spin-1/2s at the boundaries. Let us write
the ground state of AKLT as �σ , where σ is a string of +
and, − signs and zeros so that �σ can be expressed as a tensor
product of a single site states |+〉, |−〉 and |0〉. If the first spin-
1/2 of the chain is in the |↑〉 state, then for the first site we
cannot have a |−〉 state but only |+〉 or |0〉. In the latter case,
we still must have the first nonzero character to be a + in σ

in order to satisfy the construction of the valence bond state.
It can be verified that there has to be the same number of +
and − signs alternating all along the σ string, with no further
restrictions on the number of zeros between them.

Therefore, a typical allowed state �σ in the AKLT model
could look like this:

�σ = |000 + −0 + − + 0 − +0 − + − 0〉. (A8)

A look at (A8) reveals that is a sort of Néel order (antifer-
romagnetic order) if we ignore the zeros. Still, we cannot
predict what two spins in two distant sites will be, as we
have no control on the number of the zeros. Indeed, there is
no local order parameter that can be found to be nonzero in
the Haldane phase and that can be used to distinguish this
phase from the others. But, there is actually a nonlocal order
parameter, the string order parameter, that is able to reveal the
hidden order of the Haldane phase.

To see how we can arrive at its definition, let us introduce
the nonlocal unitary transformation

U =
N∏

k=1

k−1∏
j=1

exp
(
iπSz

jS
x
k

)
, (A9)

where N is the number of sites, such that consider a typical
AKLT state �σ , for example (A8). On this state, the operator
U acts as

U�σ = (−1)z(σ )�σ̄ , (A10)

where z(σ ) is the number of 0 characters in odd sites and σ̄ is
the new transformed string. It is defined as follows:

i. if σi = + (or −) and the number of nonzero characters
to the left of the site i is odd, then σ̄i = − (or +);

ii. otherwise, σi = σ̄i.
σi is the ith character of the string σ . In particular, if

we apply this transformation on the allowed state (A8), it
becomes

U�σ = |000 + +0 + + + 0 + +0 + + + 0〉. (A11)

Then this unitary transformation aligns all the nonzero spins
i.e., if the first nonzero character is + (or −) all the other
nonzero characters become + (or −). It is also evident that
U −1 = U .

Under the action of U , the spin operators transform as
follows:

S̃x
j = USx

jU
† = Sx

j

(
eiπ

∑
l> j Sx

l
)
,

S̃y
j = USy

jU
† = (

eiπ
∑

l< j Sz
l
)
Sy

j

(
eiπ

∑
l> j Sx

l
)
,

S̃z
j = USz

jU
† = (

eiπ
∑

l< j Sz
l Sz

j

)
. (A12)

Notice that the local operators have been mapped onto nonlo-
cal operators, as they contain a sum of spin operators acting
on different sites. This is not surprising, given that U itself is
a nonlocal unitary transformation.

It is reasonable to expect that also the local Hamiltonian H
is mapped onto a nonlocal one H̃ = UHU −1, but it turns out
that H̃ is still, in fact, local:

H̃ = J
∑

j

[h j + β(h j )
2], (A13)

where

h j = −Sx
j S

x
j+1 + Sy

j e
iπ(Sz

j+Sx
j+1 )Sy

j+1 − Sz
jS

z
j+1. (A14)

The transformed Hamiltonian H̃ still has the same symmetries
of H , but they may not be local anymore. Actually, the only
local symmetry of H is related to its invariance under rotations
of π about each coordinate axis. This symmetry group is
equivalent to Z2 × Z2: indeed, the product of two π rotations
about two different axes produce a π rotation about the third
one.

It is possible to prove [22] that, at the AKLT point, the
transformed Hamiltonian has four ground states, which are
product states and break such symmetry. These four degener-
ate ground states of HAKLT converge to a single ground state in
the infinite volume limit. The same is not true for the ground
states of H̃AKLT, as they converge to four distinct states in the
infinite volume limit, even though the two Hamiltonians are
related by a unitary transformation. In a sense, the nonlocality
of the transformation U does not guarantee a one-to-one cor-
respondence between the ground states in the infinite-volume
limit.

Finally, we can understand the role of the string order
parameter (A12). In fact, it is straightforward to verify that

Sα
0

(
r−1∏
k=2

eiπSα
k

)
Sα

r = −U −1Sα
0 Sα

r U . (A15)

This shows that the NLOPs in (15) reveal the ferromagnetic
order in the language of the nonlocal spins (A12) or, equiv-
alently, the breaking of the hidden symmetry in the original
system. Such a symmetry breaking holds in the whole Hal-
dane phase, not just the AKLT model. Indeed, in the dimer
phase the symmetry is completely unbroken and the string
order parameter (15) will vanish for every α.
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