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Quantum computers offer an intriguing path for a paradigmatic change of computing in the nat-
ural sciences and beyond, with the potential for achieving a so-called quantum advantage, namely
a significant (in some cases exponential) speed-up of numerical simulations. The rapid development
of hardware devices with various realizations of qubits enables the execution of small scale but rep-
resentative applications on quantum computers. In particular, the high-energy physics community
plays a pivotal role in accessing the power of quantum computing, since the field is a driving source
for challenging computational problems. This concerns, on the theoretical side, the exploration of
models which are very hard or even impossible to address with classical techniques and, on the
experimental side, the enormous data challenge of newly emerging experiments, such as the upgrade
of the Large Hadron Collider. In this roadmap paper, led by CERN, DESY and IBM, we provide the
status of high-energy physics quantum computations and give examples for theoretical and experi-
mental target benchmark applications, which can be addressed in the near future. Having the IBM
100 ⊗ 100 challenge in mind, where possible, we also provide resource estimates for the examples
given using error mitigated quantum computing.

I. INTRODUCTION

This article reports on scientific discussions and con-
clusions elaborated at a workshop on High-Energy
Physics (HEP) held in November 2022 at CERN in
Geneva. This first event of the Quantum Computing
for HEP (QC4HEP) Working Group gathered experts on
HEP from different academic and research institutions
and countries over four continents, who besides being
world experts in theoretical and experimental aspects of
HEP, also shared a common interest in Quantum Com-
puting (QC) and its potential as a game changer in the
field. The main goal of the workshop, and of this report-
article, is to set a common roadmap for selected topics of
interest to this community, in which we believe that QC
can have a significant impact in the near future. To this
end, we have investigated classes of problems and corre-
sponding quantum algorithms that can lead to potential
quantum advantage with near-term, noisy, quantum de-
vices, and - in particular - using IBM superconducting
devices. We aim at delivering a set of physically relevant
use cases that can become interesting demonstrations in
view of the 100⊗ 100 challenge announced by IBM [1].

For practical purposes, we have organized this article
into two main domain areas: theoretical methods and
algorithms for modelling HEP problems, and numerical
methods for the interpretation and analysis of experimen-
tal results as well as detector simulation and event gener-
ation. We strongly believe that there are important con-
nections between the two research domains, where many
of the quantum algorithms designed for the solution of
problems in one field can also be transferred to the other.

∗ alberto.di.meglio@cern.ch
† karl.jansen@desy.de
‡ ita@zurich.ibm.com

We will therefore start with a short summary of the
main HEP domains in theoretical modelling and experi-
mental physics, for which we believe there is the potential
for quantum computing to play a significant role in the
near-term.

A. Quantum Computing for Theoretical Modelling
in HEP

Despite the great success of classical lattice field theory
(e.g., for Quantum Electrodynamics (QED) and Quan-
tum Chromodynamics (QCD) simulations [2, 3]), out-of-
equilibrium and real-time dynamics (e.g., of particle col-
lisions, thermalization phenomena or dynamics after a
quench), remain out of reach for euclidean path-integral
Monte Carlo simulations. Furthermore, properties of nu-
clear matter at high fermionic densities, as they arise in
neutron stars or at the very early universe for example,
can not be accessed through these classical simulation
techniques [4]. The same holds true for theories with
topological terms, which are relevant, e.g. in QCD for
understanding the amount of CP-violation or, in the elec-
troweak sector, the sphaleron rate in the early universe.
These severe limitations are rooted in the notorious sign-
problem: the highly oscillatory behaviour of the path in-
tegrals arising in real-time phenomena, in systems with
a high fermionic particle density or in the presence of
topological terms imply an exponentially growing sam-
pling run-time complexity with an increasing number of
lattice sites [5].
An alternative approach to circumvent the sign prob-

lem might be to describe lattice fields theories in the
equivalent Hamiltonian formalism, instead of the path
integral description based on the Lagrangian formal-
ism [6, 7]. In the Hamiltonian approach, however, the
total many-particle wave function which describes a gen-
eral particle state on the whole lattice must be stored

mailto:alberto.di.meglio@cern.ch
mailto:karl.jansen@desy.de
mailto:ita@zurich.ibm.com
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throughout the simulation. But since the total dis-
cretized Hilbert space H containing these general states
corresponds to a tensor product of Hilbert spaces Hj on
a single lattice site, the required memory to store a full
wave function on the lattice scales exponentially with the
number of lattice sites.

In recent years, novel tensor network-based methods
have been introduced to alleviate these limitations by
allowing for a more compact representation of general
quantum states on the lattice [8–12]. The underlying
mechanism which allows Hamiltonian simulations to be
performed is that only a small subspace of the com-
plete Hilbert space describes the low energy physics of
quantum field theories and Tensor Network (TN) meth-
ods identify and focus exactly on these physically rele-
vant subspaces. Hence, with tensor network techniques,
various phenomena such as string breaking and real-
time dynamics [13–18] or phase diagrams of both abelian
and non-abelian gauge theories at finite fermionic densi-
ties [19–22] have been studied on a few hundred lattice
sites at least in one space dimensional models.

A very promising alternative to TN are simulations on
quantum computers which can represent large Hilbert
spaces using qubits, its basic unit of information, where
the number of required qubits merely grows linearly with
the number of lattice sites. Moreover, quantum algo-
rithms have been proposed that implement real-time dy-
namics with polynomial time complexity for scalar quan-
tum field theories and QED [23–25]. In addition, by shar-
ing with tensor networks the Hamiltonian formulation,
quantum computations completely avoid the sign prob-
lem. Thus, quantum computers offer a potential frame-
work to fully overcome the limitations outlined above for
the simulation of lattice gauge theories and especially
their real-time dynamics [26].

Indeed, various proposals for the implementation of
general abelian and non-abelian Lattice Gauge Theory
(LGT) on different types of quantum hardware have
accumulated in the past few years, and simulations of
small LGT systems on real quantum devices have been
demonstrated [10, 11, 27–30]. Examples include propos-
als for implementing lattice gauge theories using opti-
cal lattices [31–33], atomic and ultra-cold quantum mat-
ter [34–45], further proof-of-principle implementations on
a real superconducting architecture [27–29, 46, 47] and
ultimately, (1+1)-Dimensional ((1+1)D) real-time and
variational simulations of quantum electrodynamics on a
trapped ion system [48, 49]. A broad overview of recently
proposed quantum simulators and implementation tech-
niques for LGT can be found in [9–11]. It is noteworthy
that lattice gauge theories can be approached by many
different physical systems and methods, each featuring
its own advantages and disadvantages.

The understanding of the static and dynamical prop-
erties of (3+1)-Dimensional ((3+1)D) LGT, including
QED and QCD, is not the only target of today’s the-
oretical particle physics. In fact, one has to consider an
exciting but also demanding roadmap to reach eventually

the goal of performing quantum simulations of (3+1)D
systems as relevant for HEP. This roadmap starts with
(1+1)D systems which are under active research nowa-
days, moving to (2+1)-Dimensional ((2+1)D) systems
which are under consideration already now by various
groups and reach (3+1)D systems in the future.
Lower dimensional systems in (1+1)D and (2+1)D

dimensions are already very interesting. They share
important and challenging problems with their higher-
dimensional counterparts. One important example is the
study of (2+1)D QED which shows the phenomena of
asymptotic freedom and confinement. Asymptotic free-
dom is a feature of QCD, i.e., the quantum field theory
of the strong interaction between quarks and gluons. In
the limit of high energies (small distances when natu-
ral units are used) the quarks become weakly interacting
making perturbation theory well suited for theoretical
predictions. On the contrary, at low energies the interac-
tion becomes strong leading to particle confinement. In-
terestingly enough, there are also low dimensional LGT
for which the phenomena of confinement is known, which
can help shedding new lights on the theoretically harder
QCD confining mechanism (because of the large dimen-
sionality and the high number of degrees of freedom). As
said above, one such model is (2+1)D QED, which is a
compact U(1) LGT. As outlined in Section IIIA 2, we
therefore propose this model in a lower dimension as a
benchmark for exploring the potential of quantum com-
puting in the near-term, noisy, regime.

B. Quantum Computing in HEP Experiments

HEP experiments are characterised by the ability to
probe the intricacies of particle physics in the Standard
Model and beyond it, through performing measurements
and analyses at the frontier between quantum theory and
precision experimentation. The statistical precision of
experiments performed at elementary particles scales is
predicated on three classes of algorithms:

• Detector operation algorithms allow detectors to
efficiently obtain data that cleanly represents the
fundamental interactions of matter. These detec-
tors might feature very large amounts of very high
dimensional data such as those found inside hadron
colliders. These detectors require algorithms to sort
significant signals from noise. Detector-based algo-
rithms are also used to aid in inferring more com-
plete features of a given measurement of very rare
processes such as neutrino or expected New Physics
interactions.

• Identification and reconstruction algorithms are an
essential part of mapping the vast collection of pixel
intensities, timings, and event counts to a coherent
underlying physics structure in the data. These al-
gorithms allow the segmentation of datasets into
those which feature particular processes or states
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that are relevant to a given physics goal and there-
fore must be robust, efficient, and unbiased.

• Robust simulation and inference tools allow parti-
cle physics experiments to compare large amounts
of complex, highly structured data with parame-
terized theoretical predictions. These algorithms
include the creation of simulated datasets that are
used as templates in parametric statistical models,
classification tools to enhance the sensitivity of a
given measurement to some process, or the identifi-
cation of statistically anomalous signals that might
hint at sources of new physics.

QC encompasses several defining characteristics that are
of particular interest to experimental HEP: the potential
for quantum speed-up in processing time, sensitivity to
sources of correlations in data, and increased expressivity
of quantum systems. Each of the three classes of algo-
rithms mentioned above benefits from all three of these
characteristics. Experiments running on high-luminosity
accelerators need faster algorithms; identification and re-
construction algorithms need to capture correlations in
signals; simulation and inference tools need to express
and calculate functions that are classically intractable.

Within the existing data reconstruction and analysis
paradigm, access to algorithms that exhibit quantum
speed-ups would revolutionise the simulation of large-
scale quantum systems and the processing of data from
complex experimental set-ups. This would enable a new
generation of precision measurements to probe deeper
into the nature of the universe. Existing measurements
may contain the signatures of underlying quantum corre-
lations or other sources of new physics that are inaccessi-
ble to classical analysis techniques. Quantum algorithms
that leverage these properties could potentially extract
more information from a given dataset than classical al-
gorithms. Finally, algorithms that can capture more
complex aspects of HEP theory and simulation could pro-
vide estimators that are more natively aligned with the
quantum mechanical nature of the Standard Model or
indeed potentially uncover new physics beyond what can
be explained by classical models.

Quantum computing for HEP is of particular interest
due to the prospect of algorithms that can leverage the
unique properties of quantum systems to achieve com-
putational advantages. Most quantum algorithms with
a promise of a super-polynomial advantage exploit the
capacity of quantum computers to efficiently simulate
quantum-many-body systems. The search for potential
quantum advantage would be accelerated by the identifi-
cation of computational problems with the right kind of
underlying structure which can be leveraged by quantum
algorithms. Applications in the HEP domain can clearly
offer a controlled experimental benchmark for such test
cases. Through the analysis of the data from HEP ex-
periments using quantum algorithms, researchers may be
able to gain insights into the behaviour of quantum sys-
tems and potentially identify new avenues for quantum

advantage.

HEP experimental data is typically organized as col-
lections of associated detector signals that can be recon-
structed into measured particles. The distributions of
these particle measurements are calculable under specific
parameterization of the underlying theory such that the
distribution of experimental data can be directly com-
pared to theoretical predictions through the use of sim-
ulated data. These parameterizations are such that a
characterisation of any given process as defined in quan-
tum field theory is maximally described by the data. This
method of parameterization allows the accuracy of the es-
timator to scale consistently and efficiently with repeated
measurements. Therefore, although the data recorded
in high-energy physics experiments provide information
about the behaviour of fundamental particles and their
interactions, which in turn are described by quantum
fields and their dynamics governed by the principles of
quantum mechanics, it is important to note that typi-
cally the data and their descriptions are classical in na-
ture and therefore may not trivially exhibit the quantum
mechanical properties necessary for quantum advantage.
In summary, by analyzing experimental data using tools
and techniques from both quantum information theory
and particle physics, we can gain insights into the fun-
damental nature of the universe and potentially discover
new phenomena that are not yet understood.

It is worth mentioning that another community arti-
cle on quantum simulations for HEP appeared recently
in the literature [50]. Despite the broadly similar target,
our work differentiates in several essential aspects; first,
our focus is on the identification and detailed character-
ization of projects that - while approachable with near-
term, noisy quantum devices (within the 100⊗ 100 chal-
lenge) - can already address problems of interest in the
HEP community. Second, our investigation comprises
both theoretical models as well as computational aspects
related to particle collision experiments.

This article is organized as follows. In Sec. II, we
outline IBM’s roadmap for future quantum devices and
explain why digital quantum computers are suitable for
addressing open challenges in HEP. Subsequently we de-
scribe the challenges in the field and goals that are one
hopes to achieve utilizing quantum hardware in Sec. III.
Section IV contains a description of various algorithms
that we consider as key candidates for achieving the goals
outlined in the previous section. Finally, we conclude in
Sec. V. In appendix A, we provide a detailed estimation
of the required resources for encoding lattice gauge the-
ories in a digital, qubit-based quantum computer, while
appendix B contains information on selected quantum
and classical algorithms.
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FIG. 1. (Upper Panel) Proposed theoretical physical model
systems (orange) with corresponding approaches (green) and
quantum algorithms (blue). For more information on the
identified areas of interest see Section IIIA. (Lower Panel)
Proposed experimental challenges (orange) with correspond-
ing approaches (green) and quantum algorithms (blue). For
more information on the identified areas of interest see
Section III B. Legend: VQE: Variational Eigensolver; var-
QITE: variational Imaginary Time evolition; Tortter Dy-
namics: Time evolution based on trotteried time propaga-
tion operator; TN: Tensor Networks; QTN: Quantum Ten-
sor Networks inspired from classical TN; varQTE: variational
Quantum Real Time evolution; QNN: Quantum Neural Net-
works; QAOA: Quantum Approximate Optimization Algo-
rithm; HHL Algorith: Quantum algorithm for linear systems
of equations (by Aram Harrow, Avinatan Hassidim, and Seth
Lloyd); QBM: Quantum Boltzman Machines; QCBM: Quan-
tum Circuit Born Machine; QGANs: Quantum Generative
Adversarial Networks. See Appendix B for an overview of a
selection of these methods.

II. IBM ROADMAP ON QUANTUM
COMPUTING

Bringing about useful quantum computing to the sci-
entific world, and in particular, to the HEP community,
is contingent on the development of quantum comput-
ing hardware and software that permits the execution of
quantum algorithms at a scale that is capable of produc-
ing insights and results not accessible by classical com-
puters. But more than only requiring a large-scale device,
one requires that the components are sufficiently reliable
and have coherence times as well as gate parameters of
high quality [51]. The IBM Quantum roadmap proposes
a list of stepping stones that progressively improve on the
necessary requirements. The first development roadmap
was previewed in 2020 [52] laying out a progression of
the then available 27 qubits Falcon devices to the Con-
dor chip with 1,121 qubits by the end of 2023. With the
release of the 433 qubit Osprey chip a the end of 2022 [53]
the roadmap has been extended [54]. The new roadmap
now lays out a path to the newly introduced Kookaburra
chip with 4,105 qubits that utilizes interconnected chip
designs with long-range couplers. Furthermore, the new
roadmap added new chip architectures, such as the Heron
chip with 133 qubits incorporating recent advances from
gate and qubit research.

The greatest adversary to the realization of large-scale
quantum computers is noise. The components of quan-
tum computers are considerably more sensitive to im-
perfections and external interactions than their classi-
cal counterparts, leading them to decohere and turn into
classical mixtures [55]. It is therefore almost universally
accepted that complex and high-depth quantum algo-
rithms such as Shor’s factoring algorithm [56], quantum
amplitude amplification [57, 58], phase estimation [59]
or the long-time simulation of quantum dynamics will
require quantum error correction. The design plans for
the progressively larger QC layouts are therefore aimed
at providing a path to the long-term goal of realizing
a fault-tolerant quantum computer. However, current
error-correcting codes, which could be used to realize
fault-tolerant quantum computing at a non-trivial scale,
require system sizes that exceed the available hardware
by several orders of magnitude [60, 61]. Building a fault-
tolerant computer, therefore, requires not only higher
quality and larger scale devices but also research in error
correcting codes. Recent advances in the theory of error
correction [62] provide us with reason to be optimistic
about future progress. However, if we only wait for the
realization of a fault-tolerant quantum computer to run
algorithms and do not actively explore the potential of
near-term devices, we will forgo a promising opportunity
to obtain a computational advantage in the near future.

We are observing remarkable progress in quantum
hardware. As the roadmap and the already completed
milestones indicate, we are both building larger devices
and can manufacture components with an order of mag-
nitude improvement in two-qubit gate fidelities [63]. A
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FIG. 2. IBM’s roadmap for upccoming quantum computers, updated 2022.

quantum processing unit at the scale of the 65-qubit
Hummingbird chip could implement circuits with a few
thousand gates to a reasonable degree of accuracy with-
out resorting to error correction when two-qubit gate fi-
delities of 99.99% become available. Circuits of such a
size can arguably no longer be simulated by exact meth-
ods on a classical computer. This suggests an alterna-
tive path of utilizing current and impending quantum
devices [64]. Here, one restricts to computations with
only shallow-depth quantum circuits, where the size of
the circuit is determined by hardware parameters such as
coherence times and gate fidelities. As these parameters
improve, the circuit sizes that become accessible increase,
ultimately leading to circuits that provide a computa-
tional advantage over classical approaches. This path
lays out a gradual progression to obtaining quantum ad-
vantage one hardware improvement at a time, ultimately
driving the hardware evolution to progressively better
and larger devices until error correction methods can be
applied to provide us with access to circuits no longer
limited by the device noise.

Early experiments [65] demonstrated that despite the
restriction to shallow-depth circuits, noise and decoher-
ence lead to a bias in the estimates of expectation val-
ues. For this approach to provide an advantage over
classical approximation methods this bias has to be mit-
igated. These observations have motivated the develop-
ment of error mitigation tools such as Zero-Noise Extrap-
olation (ZNE) [66, 67] and probabilistic error cancellation
(PEC) [67]. The goal of these methods is to reduce, or
even fully remove, the noise-induced bias from expec-

tation values measured in shallow-depth circuits. This
is achieved by slightly modifying the circuits in differ-
ent ways and combining measurement outcomes in post-
processing to produce noise-free estimates. The proto-
cols introduce an additional computational and sampling
overhead that will ultimately grow exponentially in the
noise strength, illustrating that these protocols do not ex-
tend the circuit depth beyond the device specific param-
eters, but only ensure that accurate values are produced
within the allotted circuit size. The ZNE method was
experimentally implemented for the first time on small-
scale chips [68]. There it was shown that the effect of
noise in earlier experiments [65] could be removed. Re-
cently it was demonstrated [69] that this method could be
scaled to larger circuit sizes on improved quantum hard-
ware, such as the recent version of the 27 qubit Falcon
processor, by combining the method with error suppres-
sion techniques including dynamical decoupling [70, 71]
and Pauli - twirling [72–74]. Advances in learning and
modelling correlated noise on quantum processors have
enabled the implementation of PEC [75] to fully remove
the noise bias for even the highest weight observables on
larger devices.
To enable the scientific community to utilize these ad-

vances, IBM Quantum has announced a challenge to
both internal developers as well as the community: the
100⊗ 100 Challenge [1]. In 2024, IBM Quantum is plan-
ning to offer a quantum computing chip capable of cal-
culating unbiased observables of circuits with 100 qubits
and 100 depth of gate operations in a reasonable run-
time, i.e. within a day. This new tool is to challenge the
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community towards proposing quantum algorithms that
utilize this hardware to solve interesting problems, which
are notoriously hard for classical computers.

The HEP community plays a pivotal role here since the
field is one of the driving sources for challenging compu-
tational problems inherent to quantum mechanics. This
community is ideally equipped to propose problem rele-
vant heuristics [76, 77] that stand to benefit from early
demonstrations on quantum hardware

III. CHALLENGES AND GOALS

A. Selected Applications in the Theory Domain

In this section, we will introduce a series of interesting
theoretical challenges in different theoretical domains, in-
cluding many-particle physics, different flavours of lat-
tice gauge theories, and neutrino physics. The applica-
tions are dealing with relatively low dimensional systems,
which however preserve some of the key aspects and crit-
icality, which characterize the systems at the full scale.
Clearly, the list of identified topics cannot be exhaustive.
The choice is mainly motivated by the research interests
of the co-authors of this paper. However, we hope that
the solutions proposed for this selection of problems, and
the corresponding algorithms, can be of inspiration in
other domains not contemplated here.

Since most applications will deal with the dynamical
aspects of the different model Hamiltonians, we will start
this section with an introduction on methods for real-
time simulations.

1. Simulations of Real-Time Phenomena

Experimental results from high-energy physics labs,
such as the Large Hadron Collider, come in the form
of data on collision products. It is through scattering
processes that we experimentally acquire a deep under-
standing of the fundamental physics, typically by recon-
structing which composite quasiparticles are assembled
during intermediate stages of the scattering event, and
comparing their properties to the theoretical predictions
from the standard model (and beyond).

It is clear, however, that this type of prediction
presents several limitations. First of all, it is indirect,
in the sense that the observed composite quasiparticle
properties are compared, and not the scattering event
distribution per se. Moreover, the analytic calculations
of such quasiparticles are limited to those accessible via
perturbation theory, in the form of Feynman diagrams,
and thus no accurate predictions are expected for the
quantum chromodynamics sector, which is far from per-
turbative. A substantial obstacle towards accurate model
predictions of scattering phenomena is that Monte Carlo
methods which excel at capturing equilibrium properties,
are hindered when tackling out-of-equilibrium real-time

dynamics, again, due to the sign problem and complex
actions to numerically integrate.

From this perspective, gaining access to direct data
of non-perturbative many-body real-time simulations of
gauge theories would enable a complete paradigm shift.
The simulation could immediately provide the statistics
of products so that we could immediately compare them
with the observed statistics of collected events from high-
energy labs. Lattice gauge theories in the Hamiltonian
formulation are perfectly suited for this task: while space
dimensions are discretized (typically into a cubic lattice),
time is kept as a continuous variable, and thus the many-
body real-time evolution operator is formally well-defined
for any arbitrary time interval. In this framework, the
continuum limit can be safely approached without worry-
ing about ultraviolet divergences. Numerically comput-
ing such an evolution operator, and its action onto an ar-
bitrary input state (for instance converging quasiparticle
wavepackets) is however an exponentially hard problem
in the lattice system size and requires the aid of quantum
simulators or quantum-inspired numerical algorithms to
be carried out in good approximation.

Both analog and digital quantum simulator strategies
can be used to push towards this goal. In either case, the
real-time evolution operator is applied to a set of qubits
(or, more generally, qudits) which encode the many-body
quantum fields state. An analog quantum simulator ap-
proximates the target model Hamiltonian by implement-
ing an instantaneous controllable Hamiltonian that is
equivalent to the target at a chosen energy scale, and
then lets the system evolve with time-independent con-
trols [40]. This approach is inherently scalable, but it is
limited by what types of interactions can be engineered.
Conversely, digital quantum simulators aim at decompos-
ing the action of the time evolution into a circuit of pro-
grammable quantum operations (for instance, gates) [48].
This approach is more general, especially if the quantum
resources form a universal set of gates, but it can be de-
manding in terms of scalability and coherence. Indeed,
the number of qubits and the circuit depth required to
perform such simulations are largely beyond the capabili-
ties of current near term, noisy quantum devices [24, 78].

Alongside methods based on quantum hardware, we
highlight the potential of Tensor Networks as a numerical
strategy working on the same lattice Hamiltonian frame-
work (discrete space, continuous time) as quantum sim-
ulators [79–82]. TN excel in describing lattice quantum
states at equilibrium, even in multiple spatial dimensions,
and even at finite densities [9, 12, 21, 83]. Moreover,
they can accurately capture out-of-equilibrium dynamics
as long as the entanglement production is low (i.e. the
area laws of entanglement are not violated). While
seemingly a strict requirement, it is actually a ubiqui-
tous occurrence, from many-body localization, to slow
quenches across phase transitions (Kibble-Zurek mech-
anism), to short-timescale transient phenomena under
Lieb-Robinson bounds. Thus there are many physical
systems whose dynamics are accurately captured by TN
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(especially in one dimension). Indeed, the first proof of
principle demonstration of a scattering event in a lattice
gauge theory in one-dimension was shown in [15] where
two-wave-packets collisions and subsequent time evolu-
tion of the created entanglement was studied. A more
refined study of the process was presented in [18].

When specifically addressing scattering problems, with
either classical or quantum simulations, there is an ad-
ditional conceptual complexity which gets added to the
already-serious problem of executing the many-body dy-
namics: namely, preparing the input state. Initial quan-
tum states in particle colliders experiments typically in-
volve localized wave packets of composite quasiparticles,
for example hadrons. Written in the elementary quan-
tum fields, these wave packets have a well defined center-
of-mass momentum and overall number density (usu-
ally one quasiparticle), but their internal wave function
can be very complex. Clearly, the scattering simulation
must include strategies to build these states (and control
their momentum) by carefully manipulating the elemen-
tary quantum fields encoded as qudits, starting from the
(entangled) dressed vacuum. Proposals to achieve such
input-state preparation have been put forward for Quan-
tum Tensor Network (QTN) [84, 85] but the optimal gen-
eral strategy is still unclear, and requires further inves-
tigation. Notice that this problem will remain when it
becomes possible to study scattering processes in future
quantum processors. Thus, any partial or final solution
developed for tensor network will be highly valuable also
for future quantum computations and the simulation of
scattering processes. Let us mention in passing that other
real-time phenomena, such as quenching, see e.g. [17, 86],
have also been studied with QTN techniques.

2. (2+1)D QED

As mentioned in the introduction, (2+1)D QED is one
of the simplest quantum field theories that nevertheless
retain interesting physics: for example it shares with
QCD important properties such as asymptotic freedom
and confinement, and it is an excellent starting point for
future analysis of more intricate theories. We therefore
propose (2+1)D QED as a very suitable benchmark and
testbed model to explore the potential of quantum com-
puting and, in particular, to compare it to TN calcula-
tions.

The most used classical method to study lattice gauge
theories numerically nowadays is the Markov Chain
Monte Carlo (MCMC) approach, see the recent FLAG
review [87]. While MCMC can reach lattice sizes of or-
der of 1003×200, which are currently unthinkable for QC
and TN techniques, the Hamiltonian formulation used for
the latter methods has several advantages. For example,
MCMC suffers from very large autocorrelation times to-
wards the continuum limit [88]. In the regime of small
to very small lattice spacing, we can take advantage of
quantum computing or tensor network approaches that

do not have this drawback. Furthermore, the Euclidean
path integral used by MCMC is afflicted by the infamous
sign problem [5] which makes the study of quantum field
theories at non-zero fermion densities impossible. More
specifically for lattice QCD, this prevents the exploration
and characterization of regions of the phase diagram at
non-zero baryon density, which are relevant to under-
stand the early universe, neutron stars, or the transition
to a quark-gluon plasma. Another important aspect is
the limitation for classical MCMC techniques in the pres-
ence of a topological term which, in stark contrast, can
be treated straightforwardly in the Hamiltonian formu-
lation, i.e. with QC or TN. Finally, a Hamiltonian ap-
proach will enable the study of real-time phenomena such
as scattering processes, thermalization or the dynamics
of physical systems after quenching, see the discussion in
Sec. I and below.

Although we are fully aware of the advancements of
TN [10], in the spirit of this paper, we will focus on the
quantum computing approach to study quantum field
theories and, in particular, on the example of (2+1)D
QED.

Another pillar of quantum information science and
technology is analog quantum simulators [37, 89, 90]
which allow direct experimental access to various quan-
tum many-body phenomena. Given recent advancements
in quantum-simulator technology such as single-atom res-
olution through gas microscopes [91–93] and overall high
levels of precision and control [94], quantum simulators
have become an attractive venue on which to probe high-
energy phenomena [9, 41, 95–97], affording the precious
advantage of accessible temporal snapshots at any stage
of the system dynamics. The modus operandi of quan-
tum simulators is to map a target model described by a
Hamiltonian Ĥ0 onto another quantum model amenable
for realization in an experimental platform. This map-
ping is almost never exact but will lead to an effective
model where Ĥ0 arises up to leading order in pertur-
bation theory, along with (undesired) subleading terms

λĤ1, with strength λ < 1. In the context of gauge theo-
ries, the model Ĥ0 hosts a gauge symmetry generated by
local operators Ĝj , while Ĥ1 explicitly breaks it.

Initially, quantum simulators of gauge theories were
restricted to cold-atom realizations of building blocks for
both Z2 [98] and U(1) gauge groups [99]. The experiment
of Ref. [98] employed two species of bosonic cold atoms
in a double-well potential. Periodic driving resonant at
the on-site interaction strength and with the appropriate
fine-tuning of the modulation parameters resulted in an
effective Floquet Hamiltonian with the desired Z2 gauge
symmetry. On the other hand, the experiment of Ref. [99]
employed inter-species spin-changing collisions to model
the gauge-invariant coupling between matter and gauge
fields. Although groundbreaking in their own right, these
experiments were restricted to building blocks and suf-
fered from uncontrolled subleading gauge-noninvariant
processes that limited useful coherent times [100].

To probe gauge-theory physics relevant to high-energy
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phenomena, it became essential to devise experimen-
tally feasible methods that could enable large-scale im-
plementations on quantum simulators. This was made
possible through the introduction of linear gauge pro-
tection. It could be shown that gauge violations were
suppressed controllably up to all experimentally relevant
timescales [101]. Such a term naturally arises in map-
pings of spin-1/2 representations of (1+1)D lattice QED
on a tilted Bose–Hubbard superlattice, which has re-
cently enabled the realization of a large-scale U(1) quan-
tum link model on a quantum simulator composed of 71
superlattice sites [102]. Stabilized gauge invariance was
certified by adiabatically sweeping through Coleman’s
phase transition and observing a gauge violation of less
than 10% throughout the entire dynamics. This setup
was then employed to study thermalization in the U(1)
quantum link model [103, 104], and further extended to
probe rich quantum many-body scarring regimes in this
gauge theory [105]. Extensions of this large-scale plat-
form with linear gauge protection have been proposed
for higher spatial dimensions [106] and for larger spin
representations of the gauge field [107].

In what follows and to be concrete, we consider the
formulation of QED on a two-dimensional space lattice
with lattice spacing a. Since the Hamiltonian formalism
is to be considered for its eventual application on quan-
tum devices, an encoding needs to be applied to repre-
sent the fermionic and gauge degrees of freedom, which
cannot be fully eliminated in (2+1)D. To deal with the
fermionic doubling problem [108–110], i.e. the existence
in d-dimensions of 2d flavors (or tastes) for each physical
particle, many different discretizations have been con-
sidered. One of the most used is the Kogut-Susskind
(K-S) formulation [6], which separates fermionic and an-
tifermionic degrees of freedom and assigns them to al-
ternate sites of the lattice. Therefore the fermions and
antifermions are associated with a single component field

operator ϕ̂n⃗, with n⃗ = (nx, ny) as the coordinates of the
lattice sites. The parity of the coordinate nx + ny de-
termines the type of matter associated to the site (i.e.,
with particles (antiparticles) placed on even (odd) sites).
The links of the lattice are identified by a site n⃗ and a
direction µ = x, y emanating from that site. After intro-
ducing a proper discretisation of the U(1) group, such as
Z2L+1 (L ∈ N), the electric field operators for each link

Ên⃗,µ take integer eigenvalues Ên⃗,µ |en⃗⟩ = en⃗ |en⃗⟩ , en⃗ ∈ Z.
It is then necessary to truncate this number of eigenval-
ues to (2l + 1) (l ∈ N and l ≤ L), to represent the gauge
fields on the (finite-size) quantum circuit. On the links,
we also define the link operators

Û = eiagÂµ(n⃗), (1)

where Âµ(n⃗) is the vector field and g is the coupling con-
stant. These operators obey the following commutator

[Ên⃗,µ, Ûn⃗′,ν ] = −δn⃗,n⃗′δµ,νÛn⃗,µ, (2)

and therefore act as a lowering operator on electric field
eigenstates, namely Ûn⃗,µ |en⃗⟩ = |en⃗ − 1⟩. Physically Ûn⃗,µ

measures the phase proportional to the coupling acquired
by a unit charge moved along a link.
Setting the lattice spacing a = 1, the Hamiltonian can

thus be written as [109]:

Ĥtot = ĤE + ĤB + Ĥm + Ĥkin. (3)

The first term is related to the electric interaction,

ĤE =
g2

2

∑
n⃗

(
Ê2

n⃗,x + Ê2
n⃗,y

)
. (4)

The second term in Ĥtot defines the magnetic interac-
tion,

ĤB = − 1

2g2

∑
n⃗

(
P̂n⃗ + P̂ †

n⃗

)
, (5)

where P̂n⃗ = Ûn⃗,xÛn⃗+x,yÛ
†
n⃗+y,xÛ

†
n⃗,y is called plaquette

operator.
The last two terms describe the fermionic part, i.e. the

mass term

Ĥm = m
∑
n⃗

(−1)nx+ny ϕ̂†n⃗ϕ̂n⃗, (6)

with m the fermion mass, and the kinetic term, corre-
sponding to the creation or annihilation of a fermion-
antifermion pair on neighbouring lattice sites,

Ĥkin =
∑
n⃗

(−1)nxy

2
(ϕ̂†n⃗Ûn⃗,xϕ̂n⃗+x +H.c.), (7)

where for the links in the x-direction nxy = 1 and for
those in the y-direction nxy = (−1)nx .
An alternative to the K-S formulation is the Wilson

approach [111, 112]. It introduces a second-order deriva-
tive term in the Hamiltonian that vanishes linearly with
the lattice spacing in the continuum limit. The main
advantage of this approach is that the number of qubits
needed to represent the gauge fields is lower than the one
utilised in the K-S approach, and therefore has a lower
resource requirement [25].
One of the challenges of simulating the gauge theory

with quantum computers is to find a resource efficient
way to map all its degrees of freedom onto a quantum
computer. This holds, in particular, for the bosonic
gauge degrees of freedom. Here several Ansätze exist
in the literature [30, 113–115] and it is important to
test these approaches against each other, evaluate their
advantages and shortcomings, and identify the most re-
source efficient discretization and truncation scheme for
their implementation on a quantum computer.
Once we have developed the most suitable encod-

ing, we need to choose the most appropriate simulation
technique depending on our goal. For example, in or-
der to compute the ground state energy (the low-lying
spectrum) of our Hamiltonian we can apply Variational
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Quantum Eigensolver (VQE) [116] (Variational Quan-
tum Deflation (VQD) [117] or Subspace-search Varia-
tional Quantum Eigensolver (SSVQE) [118]). Other ap-
proaches could be imaginary time evolution [119] or cre-
ating a suitable operator basis [120].

3. (2+1)D SU(2)

With the long-term goal of quantum chromodynamics
in mind, it is important to consider non-Abelian gauge
theories. A Yang-Mills theory with SU(2) gauge symme-
try group is a natural first step. The standard Kogut-
Susskind Hamiltonian formulation of lattice gauge theo-
ries is defined as

Ĥ =
1

2a

∑
n⃗

∑
α,β

(
iψ̂α(n⃗)

†Ûαβ(n⃗, i)ψ̂β(n⃗+ î)

+(−1)n⃗ψ̂α(n⃗)
†Ûαβ(n⃗, j)ψ̂β(n⃗+ ĵ) + H.c.

)
+m

∑
n⃗

∑
α

(−1)n⃗ψ̂†
α(n⃗)ψ̂α(n⃗)

+
g2

2ad−2

∑
n⃗,l

∑
b

[Êb(n⃗, l)]2

− 1

2a4−dg2

∑
n⃗

∑
α,β,γ,δ

(
Ûαβ(n⃗, i)Ûβγ(n⃗+ î, j)

×Û†
δγ(n⃗+ ĵ, i)Û†

αδ(n⃗, j) + H.c.
)
.

(8)
where n⃗ is a lattice site and l is a direction on the spatial
lattice. Greek indices such as α = 1, 2 (and β, γ, δ) are
indices in the fundamental representation of the SU(2)
group, whereas b = 1, 2, 3 is an adjoint index. Physically,
Êb is the chromoelectric field and, as discussed for QED,
the chromomagnetic field arises from the plaquette term
that appears last in Eq.(8). The physical parameters in
this Hamiltonian are the fermion mass m and the gauge
coupling g.
The problem of simulating lattice gauge theories on a

universal quantum computer using qubits as the basic de-
grees of freedom was defined in general terms in [23]. It
was shown in [121] that lattice gauge theories in any spa-
tial dimension can be simulated on quantum hardware
using a polynomial number of gates in the number of lat-
tice sites, bosonic gauge field truncation, and simulation
time.

Other approaches use quantum simulators to emulate
the physics of non-abelian gauge theories. In these im-
plementations, gauge invariance is a direct consequence
of some underline symmetry of the quantum simula-
tor. For instance, angular momentum conservation is
used to realise the SU(2) Yang-Mills model [38] and nu-
clear spin conservation in alkaline-earth atoms is used to

mimic SU(N) models within the quantum link formula-
tion [40]. In this respect, the quantum link formulation
appears as a natural formulation for the quantum simula-
tion of the non-abelian model which was proposed within
a Rydberg-based architecture [33] and within supercon-
ducting circuits [122].
The first quantum simulation of a SU(2) lattice gauge

theory on IBM superconducting hardware was done
in [27]. Subsequently, exploratory computations were
conducted for one-dimensional SU(2) on an IBM super-
conducting platform [28]. This implementation combined
the fact that a one-dimensional theory with open bound-
ary conditions allows one to rewrite all gauge field degrees
of freedom as long-range interactions among fermions
with VQE to study both meson and baryon states. There
have further been one-dimensional SU(3) quantum sim-
ulations [123–125], and error mitigation methods have
been applied to study the time evolution of non-abelian
models [126].
In contrast to the one-dimensional case, studies of two-

dimensional SU(2) gauge theory require both fermion
and gauge field degrees of freedom. Several formulations
have been proposed [127, 128], and practical studies of
each will provide valuable information for understanding
their advantages and disadvantages.
The choice of basis for the local degrees of freedom

in the implementation of a non-abelian gauge model is
important [129, 130]. Usually, one needs to study the
effect of discretisation or truncation on the physical re-
sults of the models [131, 132]. One option to discre-
tise non-abelian theories is to use finite-dimensional sub-
groups [133–135], which can be efficiently implemented
within a Rydberg base architecture [136–139]. Early
computations of SU(2) gauge fields on quantum hard-
ware have used lattices with up to 6 plaquettes in to-
tal [27, 140]. An initial study was also carried out for
SU(3) in [29].
Upcoming computations can build upon the lessons

learned from these first steps, and grow in scale and scope
alongside the continuing progress in quantum hardware
deployment in the noise intermediate scale quantum era.

4. Quantum Link Models and D-Theory

D-theory is an alternative formulation of lattice field
theory in which continuous, classical fields are replaced
by discrete, quantum degrees of freedom, which undergo
dimensional reduction from an extra dimension of short
extent [141]. In the D-theory approach, lattice gauge
theories are realized via quantum link models [142–147].
Quantum links are generalized quantum spins endowed
with an exact gauge symmetry, which is located on the
links of a spatial lattice.
Quantum links reside in finite-dimensional irreducible

representations of an embedding algebra. This is in
contrast to the standard Wilson-type lattice gauge the-
ory, which is based on an infinite-dimensional represen-
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tation on each link. Quantum links with a U(N) or
SU(N) gauge group reside in the embedding algebra
SU(2N). In particular, U(1) quantum link models are
formulated with ordinary SU(2) quantum spins. SO(N)
and Sp(N) quantum link models are realized with an
SO(2N) and Sp(2N) embedding algebra, respectively.
Since SU(2) = Sp(1), an SU(2) quantum link model can
be realized with a simple Sp(2) = SO(5) embedding al-
gebra.

The simplest Abelian U(1) quantum link model is re-
alized with ordinary quantum spins 1/2, which can be
embodied by individual qubits. These dynamics have al-
ready been represented by quantum circuits in a resource-
efficient manner [148]. The implementation of the U(1)
quantum link model on a triangular lattice is particularly
simple, because it takes advantage of the heavy hexago-
nal lattice topology underlying the 127-qubit IBM Eagle
chip [149].

The simplest non-Abelian SU(2) quantum link model
uses the embedding algebra Sp(2) = SO(5), which has
a 4-dimensional fundamental representation that can be
embodied by a pair of qubits residing on each lattice link.
By an exact duality transformation, this SU(2) quan-
tum link model can be expressed in terms of Z(2)-valued
height variables, which can even be embodied by indi-
vidual qubits [150]. This model is also interesting from
a condensed matter perspective, because it is closely re-
lated to the quantum dimer model on the Kagomé lattice
which has a rich, non-trivial phase structure. It would be
very interesting to construct a quantum circuit, similar
to the one for the U(1) quantum link model on the trian-
gular lattice, in order to perform quantum computations
of the real-time dynamics of SU(2) gauge theories.

5. (1+1)D CP (N − 1) Models from (2 + 1)D SU(N)
Quantum Spin Ladders

(1+1)D CP (N − 1) quantum field theories are
toy models that share many important features with
(3+1)D QCD: they are asymptotically free, have a non-
perturbatively generated massgap, as well as θ-vacua
[151, 152] In addition, they have non-trivial phase struc-
ture at non-zero chemical potential, including Bose-
Einstein condensates with and without ferromagnetism
[153].

The standard lattice formulation of CP (N−1) models
at non-zero vacuum angle or at non-zero chemical poten-
tial suffers from similar sign and complex action problems
as QCD itself. D-theory offers an alternative approach
to standard lattice field theory, which uses discrete quan-
tum (rather than continuous classical) degrees of freedom
without compromising exact continuous symmetries in-
cluding gauge symmetry. In asymptotically free theo-
ries (including (1+1)D CP (N − 1) models and (3+1)D
QCD, the continuum limit is reached naturally (i.e. with-
out any fine-tuning) via dimensional reduction from a
higher-dimensional space-time, with a short extent of the

extra dimension. Interestingly, the finite-density and θ-
vacuum sign problems of the standard formulation have
already been overcome by the alternative D-theory for-
mulation, in which CP (N−1) models are regularized us-
ing SU(N) quantum spin degrees of freedom [154] This
formulation is also amenable to analog quantum simula-
tions with ultra-cold alkaline-earth atoms in optical lat-
tices, which holds the promise to facilitate real-time sim-
ulations of their dynamics [155] CP (N − 1) models in
the D-theory formulation are ideally suited as a testing
ground for quantum computation, because, on the one
hand, at least in some cases, advanced classical computa-
tional techniques are available for validation, and, on the
other hand, similar methods can be developed for lattice
gauge theories, ultimately aiming at QCD, in particular
in the quantum link formulation. The strategy behind
D-theory, namely to formulate quantum field theory di-
rectly in terms of quantum degrees of freedom, is ideally
suited for both quantum simulation and quantum com-
putation.
The standard formulation of CP (N − 1) models uses

classical, Hermitean, idempotent N × N -matrix fields
P (x)

P (x)† = P (x) , P (x)2 = P (x) , TrP (x) = 1 ,

with the Euclidean action

S[P ] =

∫
d2x

1

g2
Tr [∂µP∂µP ] + iθQ[P ] ,

and the integer-valued topological charge

Q[P ] =
1

πi

∫
d2x ϵµνTr [P∂µP∂νP ] ∈ Π2[CP (N−1)] = Z .

The model is invariant under a global SU(N) symmetry,
P (x)′ = ΩP (x)Ω†, Ω ∈ SU(N).
The alternative D-theory formulation replaces the clas-

sical field P (x) by SU(N) quantum spins T a
x (a ∈

{1, 2, . . . , N2 − 1}) that obey the commutation relation

[T a
x , T

b
x′ ] = iδxx′fabcT

c
x ,

and reside on a 2-d spatial square lattice (of spacing
a) with a long x1-direction (of extent L with periodic
boundary conditions) and a short x2-direction (of ex-
tent L′ with open boundary conditions). The even-parity
sites x ∈ A (with even x1 + x2) carry the fundamental
representation {N}, T a

x = λa/2 (where the λa are Gell-
Mann matrices), while the odd-parity sites y ∈ B carry

the anti-fundamental representation {N}, T a

y = −λa∗/2.
An antiferromagnetic SU(N) quantum spin ladder (with
J > 0) is then described by the nearest-neighbor Hamil-
tonian

H = J
∑
⟨xy⟩

T a
xT

a

y ,

which commutes with the total SU(N) spin T a =∑
x∈A T

a
x +

∑
y∈B T

a

y. In the presence of chemical po-
tentials µa at inverse temperature β the grand canonical
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partition function then takes the form

Z = Tr exp(−β(H − µaT
a)) .

Remarkably, this antiferromagnetic quantum spin lad-
der is a proper regularization for the (1+1)D CP (N − 1)
quantum field theory. An even extent L′/a of the short
dimension corresponds to vacuum angle θ = 0, while
an odd extent implies θ = π. For L = L′ = β = ∞,
the quantum antiferromagnet breaks the global SU(N)
symmetry down to U(N − 1) (at least for N ≤ 4).
This gives rise to dynamically generated, effective Gold-
stone boson fields P (x) that reside in the coset space
SU(N)/U(N − 1) = CP (N − 1). Once L′ is made fi-
nite, the Mermin-Wagner theorem implies that SU(N)
can no longer break spontaneously. As a result, the previ-
ously massless Goldstone bosons pick up an exponentially
small mass proportional to exp (−4πL′ρs/cN), where ρs
is the spin stiffness and c is the spinwave velocity. For
moderately large L′/a ≳ 4, the corresponding correlation
length exp (4πL′ρs/cN) ≫ L′ exceeds the extent of the
short dimension and the system dimensionally reduces to
the (1+1)D CP (N − 1) model. These dynamics, which
may seem complicated at first glance, have been veri-
fied in great detail in quantum Monte Carlo simulations
using classical computers. Already at the level of clas-
sical computation, the use of discrete quantum, rather
than continuous classical, fundamental degrees of free-
dom has led to numerous algorithmic advantages, which
facilitated efficient numerical simulations of θ-vacua and
dense matter systems [153, 154]

Analog quantum simulators for the SU(N) quantum
antiferromagnet have already been designed, using ultra-
cold alkaline-earth atoms in an optical lattice, and are
ready to be realized in the laboratory already today [155].
This holds the promise to address the real-time dynamics,
which remains inaccessible to classical simulation tech-
niques. This would be the first time that an asymptoti-
cally free quantum field theory is studied with quantum
simulation. The simple nature of the quantum spin de-
grees of freedom and the ultra-local form of their Hamil-
tonian strongly suggest to also explore CP (N−1) models
using digital quantum computation. In particular, in D-
theory the CP (1) model with a global SU(2) symmetry
is regularized with ordinary SU(2) quantum spins which
can be embodied directly by individual qubits. Similarly,
the SU(3) quantum spins in the D-theory formulation
of the CP (2) model are nothing but qutrits. The cor-
responding Hamiltonian dynamics can be realized with
sequences of single-qubit and two-qubit (or single-qutrit
and two-qutrit) quantum gates. It is possible — and
already quite interesting — to work with quantum spin
chains (i.e. with L′/a = 1) rather than with quantum spin
ladders (L′/a > 1). In particular, for L′/a = 1 the an-
tiferromagnetic SU(2) quantum spin chain corresponds
to the (1+1)D Wess-Zumino-Novikov-Witten conformal
quantum field theory in the continuum limit. The cor-
responding SU(3) quantum spin system, although it is
not in the continuum limit, describes a strongly coupled

CP (2) model at a first-order phase transition with spon-
taneously broken charge conjugation symmetry. This
would allow, for example, real-time studies of false vac-
uum decay.

6. Collective Neutrino Oscillations

Neutrinos play a central role in extreme astrophysi-
cal events like core-collapse supernovae and neutron star
binary-mergers as they dominate the transport of energy,
entropy and lepton number. Due to the fact that neu-
trinos have masses and that the mass basis, denoted by
{|νi⟩}i=1,3, is different from the flavor basis, neutrinos
will experience oscillations in the population of the dif-
ferent flavors components (νe, νµ, ντ ).
Given the importance of charge-current reactions, a

detailed understanding of flavor oscillations in these set-
tings is critical to predict their dynamical evolution.
Given the high density of neutrinos in these environ-
ments, flavor oscillations are strongly affected by two-
body neutrino-neutrino interactions, which render the
neutrino cloud a strongly coupled many-body system.
Direct solution of the evolution equations for general ini-
tial conditions can be exponentially hard with classical
simulations, and the conventional approach is to rely on
mean-field approximations [156–158], which, however, do
not include direct scattering between neutrino. Efforts in
going beyond mean-field with classical computers were
recently reviewed in [159].
The complexity of neutrino physics persists even with

the simplifying assumption that only two flavors (the
electron flavor νe and one heavy flavor νx) participate
in the oscillation. With this assumption, one can model
each neutrino as a set of interacting two-level systems
and obtain the following Hamiltonian [160]

H =

N∑
i=1

bi ·σi+λe

N∑
i=1

σz
i +

µ

2N

N∑
i<j

(1− cos(θij))σi ·σj ,

(9)
where σi = (σx

i , σ
y
i , σ

z
i ) is a vector of Pauli matrices act-

ing on the i-th neutrino. The first term in Eq. (9) de-
scribes vacuum oscillations around the mass basis with
bi =

δm2

4Ei
(sin(2θν), 0,− cos(2θν)), where δm

2 = m2
2 −m2

1

is the square mass difference between mass eigenstates,
θν is the mixing angle and Ei the energy of the i-th
neutrino. The second term in Eq. (9) is generated by
charge-current scattering with a background of electrons
with coupling constant λe =

√
2GFne with GF the Fermi

constant and ne the electron density. This is the term re-
sponsible for the Mikheyev-Smirnov-Wolfenstein (MSW)
effect due to the interaction of electrons with neutrinos
experienced by neutrinos travelling in dense matter. Fi-
nally, the third term in Eq. (9) is the neutrino-neutrino
interaction generated by neutral-current weak reactions.
Its coupling constant µ =

√
2GFnν is directly propor-

tional to the local neutrino density nν , while the angular
factor inside the sum encodes the spatial geometry of the
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problem through its dependence on the relative angle of
propagation cos(θij) = pi ·pj/(∥pi∥∥pj∥) where pi is the
momentum of i-th neutrino. This term prevents collinear
neutrinos from interacting.

The Hamiltonian in Eq. (9) can be used to describe
the flavor evolution of a homogeneous gas of neutrinos
at fixed density. Most neutrinos are however leaving
the explosion region of the emitter (neutron stars, ...)
where they have been generated and thus experience dif-
ferent local conditions as they move out. This can be
incorporated by allowing the coupling constants λe and
µ to change with the distance r from their emission, or
equivalently with the time t since they left the neutrino
sphere (neutrinos are considered as ultra-relativistic par-
ticles moving at approximately the speed of light). With
this, we are left with describing the non-equilibrium evo-
lution of a large number of fermions interacting through
an eventually non-adiabatic two-body Hamiltonian. Sev-
eral extensions are possible to account e.g. for the full
three-flavor structure [161] or the presence of inhomo-
geneities [162] but are likely beyond the scope of the
100⊗ 100 IBM challenge.

Current efforts to study the full many-body flavor dy-
namics generated by the Hamiltonian in Eq. (9) be-
yond the mean-field approximation have been carried
out under a number of additional simplifying assump-
tions. A popular one is to consider an average inter-
action strength, effectively removing the angular depen-
dence in the two-body interaction turning it into a term
proportional to the square of the total angular moment.
This has the effect that the system becomes integrable
using the Bethe-Ansatz [160] and classical simulations
have been performed in the past exploiting directly this
property up to N = 9 [163]. Using more direct inte-
gration approaches allowed N = 16 to be reached [164]
while using Matrix Product States (MPS) together with
the Time Dependent Variational Principle systems up to
N = 20 were studied while keeping a good convergence
with the bond dimension [165]. Note that the latter sim-
ulations employed around 105 time steps for the entire
calculation and this leaves a direct comparison possibly
out of range of the 100⊗ 100 IBM challenge.

Another common assumption is to neglect the MSW
term proportional to the electron density using the ar-
gument that this coupling constant greatly dominates in
the interior regions where many-body effects are expected
to be important. The MSW term can be eliminated us-
ing a rotating wave approximation which ultimately pro-
duces a lower effective mixing angle. In general this is
not necessary as this one-body term can be trivially fast-
forwarded and included correctly, and efficiently, in the
simulation by resorting to interaction picture schemes
like the one proposed in [166]. In the absence of this
term, the Hamiltonian enjoys a global U(1) symmetry
generated by rotations around the mass basis which can
be used to reduce the implementation cost. This strategy
was used in [167], together with the use of IBM Qiskit’s
isometry function to implement evolution in each sub-

block, to study flavor oscillations up to N = 4 neutrinos
systems. The approach has the advantage that the cir-
cuit depth does not increase as a function of the time
steps but for large system sizes it would require an expo-
nentially large number of gates. Part of the difficulty in
including the two-body interaction is its all-to-all nature
which naively does not fit well on devices with reduced
connectivity. The problem can however be circumvented
using an appropriate SWAP network scheme producing a
circuit with N layers of N/2 nearest neighbor two-qubit
gates each. This approach was proposed in [168] where
a N = 4 neutrino simulations with a single Trotter step
was carried out on IBM devices and has been shown to
be advantageous to allow for classical simulations using
MPS [169]. Platforms that allow for all-to-all connectiv-
ity, like trapped-ions, allow more flexibility but require
a similar number of two-qubit operations. Due to their
current higher fidelity, simulations have been reported for
up to 10 time steps with N = 4 and for one time step
up to N = 12 neutrinos [170, 171]. Approaches using
quantum annealers have also been proposed and applied
for systems up to N = 4 [172].
The simplified neutrino oscillation problem described

by Eq. (9) is encoded quite naturally on a digital quan-
tum computers with one qubit per neutrino. Current
attempts to describe neutrinos on these platforms are
still restricted to small N values with rather simple ini-
tial conditions, usually wave-functions describing non-
correlated neutrinos. Besides the description of larger
neutrino number, challenges for future applications in-
clude the extension to more realistic initial conditions
like initially thermalized neutrinos, or the evolution of
these correlated systems over longer time to extract
for instance asymptotic entanglement between neutri-
nos or characterize the relaxation dynamics to thermal
states [173]. Time-evolution requires efficient algorithms
to simulate the dynamics (see section IVA). A first or-
der Product Formulas (PF) step for N neutrinos costs
3N(N − 1)/2 Controlled NOT gate (CNOT) operations
while a second order step will cost 3(N2 − 3N/2 + 1)
CNOT gates [170]. The depths are instead 3N and
6N − 3, respectively. The implementation can be per-
formed in a more hardware efficient way employing cross-
resonance gates instead at the price of increasing the
decomposition error. Furthermore, a hardware friendly
approach to multi-product formulas can further reduce
circuit depth and increase simulation accuracy [174]. An
additional possibility worth pursuing in the short term is
the use of approaches based on Variational Time Evolu-
tion (VTE) which allow for a circuit depth independent
on the evolution time.

B. Selected Applications for Experiments

High-energy physics experiments are characterized by
the need to process a large amount of complex, highly
structured data. Historically, large collaborations have
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relied on massively parallel computing infrastructure and
pioneered the field of distributed computing with the
LHC Computing Grid. The need to search for processes
with small production cross section together with next
generation detectors, generate a sheer size of the data
sets to analyze, that require a new computing model,
more efficient algorithms – including data-driven tech-
niques such as artificial intelligence–, and the integration
of new hardware beyond the von Neumann architectures.
It is in this context that investigations about the intro-
duction of quantum computing in HEP experiments is
framed: the community is looking into accelerating or
improving the different steps of data analysis and data
processing chains. Currently most of the work is focused
on the development and optimisation of Quantum Ma-
chine Learning (QML) algorithms implemented either as
quantum neural networks (variational algorithms) or ker-
nel methods [175, 176]. See Appendix B for a summary
of these methods. The next section will give an overview
of the range of algorithms under study as applied to HEP
and their present limitations.

It is important to notice, however, that evaluating the
performance of QML algorithms on HEP data requires
care: realistic applications have requirements that can
not be easily accommodated on quantum devices, to-
day. The most critical issue is related to the size of data
samples, together with their complexity. Indeed, studies
on the introduction of quantum algorithms (and QML
in particular) need to take into account both the total
number of events that need analyzing (that can easily
reach hundreds of thousands) and the large number of
input features in each single event (typically in the order
of tens or hundreds). The preferred approach today is
hybrid: a classical feature extraction and/or dimension-
ality reduction step is used to bring the classical input to
a size that can be realistically embedded on noisy, near-
term quantum hardware. Depending on the complex-
ity of both the dataset and the task, different methods
are used, ranging from linear PCA, to non-linear train-
able embedding or compression methods (auto encoders
or other AI-based techniques) [177]. The advantage of
the latter is clearly their versatility and the possibility to
train them together with the quantum algorithms for the
specific task at hand.

In particular, trainable techniques allow an end-to-end
optimisation of the reduced data representation (often
referred to as “latent representation”), their embedding
in quantum states and the quantum algorithm itself. A
binary classification problem, such as the separation of
signal versus uninteresting background, is a common ex-
ample: simultaneously training an autoencoder for data
compression together with the corresponding classifier,
ensures that the resulting latent representation exhibits
maximal separation between the two classes. Multiple
examples have already proven the advantage of this ap-
proach in both the classical and quantum domain [178–
183] In addition, a critical part of the quantum algorithm
design and optimisation process is aimed at reducing the

number of input features needed by the quantum algo-
rithm in order to perform its task, together with the def-
inition of a minimal training set, that still ensures con-
vergence and generalization capabilities.
Finally, the compressed classical data is embedded, or

loaded, onto quantum states for processing by the QML
algorithm. This step is commonly referred to as the
state preparation step. Different techniques have been
studied [184] that compromise between an optimal use of
qubit states, exploiting in full the potential exponential
advantage, and the need to efficiently map state prepa-
ration circuits on noise devices. In general, the choice of
the data embedding strategy has an effect both on the
performance of the overall algorithm and on its inter-
pretation (as, for example, in the kernel formalism) as
mentioned in Sec. IV.
Taken all together, these steps have made possible the

design and implementation of quantum algorithms for
most of the tasks in the typical data processing chain,
albeit at a reduced scale. Access to the 100⊗100 quantum
hardware, combined to data reduction techniques is likely
to bring current prototypes to a much more realistic size.

1. Rare Signal Extraction

Extracting rare signals from background events is an
essential part of data analysis in the search for new phe-
nomena in HEP experiments. In this section we will cover
algorithms, methods and limitations of this area of re-
search, giving some references which, for sure, do not
represent a complete picture of the state of art.
Posed as a classification task, rare signal extraction

faces an imbalance problem in the number of samples
belonging to the signal class versus the number of samples
from the background class. Entry level cases are the ones
where a single feature is powerful enough to discriminate
the process of interest while more complicated cases rely
on multi-variate analysis of many features to get to a
reasonable level of discrimination power.
In the machine learning community, techniques for

learning from imbalanced data are well established, and
for the HEP case, analysis methods developed in [185,
186] have been effectively implemented. An alternative
approach to classification with imbalance techniques is
anomaly detection [187, 188]. In the following we touch
upon some modern class imbalance techniques adopted in
the community, focusing on novel loss functions and data
re-sampling techniques. However, the main goal here is
not merely the classification task but also the generation
of predictions with their corresponding uncertainties. In
particle physics, as in other scientific domains, if uncer-
tainties are not presented the picture is almost incom-
plete.
Using the accuracy of a classifier as a metric for rare

events can be misleading as it says nothing about the
signal, in terms of distribution and feature importance.
The ROC curve is a good general purpose metric, pro-
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viding information about the true and false positive rates
across a range of thresholds, and the area under the ROC
curve (AUC) is a good general purpose single number
metric. Nevertheless, when dealing with imbalanced data
the precision-recall curve is the preferred metric, where
the recall represents a measure of how many true signal
events have actually been identified as signal and preci-
sion quantifies how likely an event is to truly be signal
and depends on how rare the signal is. Different strate-
gies can be used like under-sampling the majority class or
oversampling the minority class, where the former is pre-
ferred because of the potential overfitting resulting from
oversampling [189]. Moreover, the standard algorithm
can be modified by playing with the hyperparameters of
the loss and by adding an additional penalty for misclassi-
fication. For instance, following [190], a modified version
of the cross entropy loss function used for binary classifi-
cation to differentiate between easy- and hard-to-classify
samples is the focal loss function:

FL = −(1− pt)
γ log(pt) . (10)

Here pt is the model’s estimated probability that a given
event belongs to the signal class and γ is the modulating
parameter. As γ is increased the rate at which easy-to-
classify samples are down weighted also increases. As
pointed out previously, not only should the classification
be efficient but also the related prediction uncertainties.
Current approaches for this include dropout training in
Deep Neural Networks as approximate Bayesian infer-
ence, variance estimation across an ensemble of trained
deep neural networks, and Probabilistic Random For-
est [191]. For example, such techniques have been used
in for the measurement of the longitudinal polarization
fraction in same-sign WW scattering [192] and for the
decay of the Higgs boson to charm-quark pairs [193].

Same-sign WW production at the LHC is the Vector
Boson Scattering (VBS) process with the largest ratio of
electroweak-to-QCD production. As such it provides a
great opportunity to study whether the discovered Higgs
boson leads to unitary longitudinal VBS, and to search
for physics Beyond the Standard Model (BSM). Confirm-
ing or refuting the unitarity of VBS requires not just a
measurement of pp→ jjW ±W±, but of the fraction of
these events where both Ws are longitudinally polarized
(LL fraction). The fraction of longitudinally polarized
events is predicted to be only a fraction 0.07 to the total
number of events in the Standard Model (SM) at large
dijet invariant mass (mjj) [192] making this a challenging
measurement. Common techniques for this kind of use
cases are Random Forest with imbalanced implementa-
tion, Gradient Boosted Decision Tree and Deep Learning
models with standard or focal loss function. Overall, all
of the machine learning models significantly outperform
the kinematic variables approach [194].

The second application of class imbalance techniques
is the measurement of Higgs boson decays to charm-
quark pairs. Searches for the decay of the Higgs boson
to charm-quarks have produced only weak limits to date.

Again, one of the reasons for this poor performance is the
SM the rate for h→ bb̄ is about 20 times larger than the
rate for h → cc̄. The standard approach relies on tag-
ging the flavour of the jets, which involves discriminating
charm initiated jets from bottom jets, or vice versa. The
primary technique used currently in this case is Boosted
Decision Trees, mainly structured as binary classification
problem, where the community effort is devoted to the
definition of ad-hoc flavour tagging through the use of
the class imbalance techniques instead of general purpose
ones [193].

It is natural to ask whether quantum computing algo-
rithms could be used to support these complicated tasks.
However, it is not evident where a quantum algorithm
could provide a systematic advantage with respect to
these classical approaches. Possible directions of research
should answer the following questions: can we overcome
the problem of lack of density or insufficiency of infor-
mation for these problems? Can we better explore and
analyse the feature space that describes those problems?
Could QML methods, which employ quantum models to
encode input data into a high-dimensional Hilbert space
and extract physical properties of interest from the quan-
tum state, be an alternative approach to signal detec-
tion? A particularly intriguing direction for quantum
approaches here could be the possibility of training di-
rectly on experimental data [195] that can be directly
analysed as quantum data.

Overall, in the absence of a clear hint of new physics
in HEP experiments, a data-driven, model-agnostic
search for rare signals has gained considerable interest.
Anomaly detection, realized using unsupervised machine
learning, is the most commonly used technique and will
continuously becoming important in HEP analysis work-
flow. The feasibility of anomaly detection is investigated
in [196] with Variational Quantum Algorithm (VQA)-
based Quantum AutoEncoder (QAE). With the bench-
mark process of pp → H → tt̄ for signal, the QAE per-
formance for anomaly detection has been compared with
that from a classical autoencoder, showing a faster con-
vergence in the quantum case. Recently, in [197] the
authors find that employing a Quantum Support Vec-
tor Classifier (QSVC) trained to identify the artificial
anomalies, it is possible to identify realistic BSM events
with high accuracy. In parallel, they also explore the po-
tential of quantum algorithms for improving the classifi-
cation accuracy and provide plausible conditions for the
best exploitation of this novel computational paradigm.
Additionally, in [181] the authors found evidence that
quantum anomaly detection using a Quantum-enhanced
Support Vector Machine (QSVM) could outperform the
best classical counterpart. In [198] an Anomaly Quantum
Generative Adversarial Network (QGAN) is introduced
to identify anomalous events (BSM particles). Interest-
ingly, this model can achieve the same anomaly detection
accuracy as its classical counterpart using ten times fewer
training data points.

Overall, current quantum-classical hybrid QML for
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rare signal extraction are largely based on two algo-
rithms: VQA [199] and QSVM with kernel method [200,
201]. The quantum kernel-based QSVM has a poten-
tial for good trainability due to a convex cost-function
landscape, and this property could be beneficial for the
100 ⊗ 100 challenge. It is however pointed out that
the kernel function would exponentially concentrate to a
fixed value with the number of qubits unless the U(x)
is properly designed [202], analogously to the barren
plateau in VQA.

VQA-based QML methods are generally known to be
affected by the infamous barren plateau problem, where
a non-convex landscape of cost function causes the gradi-
ents to vanish exponentially in the number of qubits, as
detailed in Sec. IVB2. With the 100⊗100 IBM challenge,
overcoming barren plateaus may be critical for QML
applications to signal extraction. The approach based
on so-called geometrical Geometrical Quantum Machine
Learning (GQML), that exploits prior knowledge to the
problem, such as symmetry presented in the data at
hand, will be promising for applications to HEP data
analysis. However, experimental data are the result of
a complex convoluted effect given by different layers of
interaction, from parton shower to detector effects. This
would eventually destroy any desirable symmetry of the
data. Alternatively, quantum models in an overparam-
eterized regime may have a desirable cost landscapes.
This motivates exploring GQML models and/or overpa-
rameterization in a realistic HEP data analysis flow. We
should also pursue how efficiently a QML model can gen-
eralize to unseen test data with fewer trainable parame-
ters or less training data, and also consider the possibility
of re-using well known techniques from classic machine
learning, like ensemble, where, for instance, the effect of
noise could be mediated by the structure of the algo-
rithm [203].

2. Pattern Recognition Tasks: Reconstructing Particle
Trajectories and Particle Jets

Multiple steps in the experiments data processing
chains can be collected into the general category of pat-
tern recognition or the problem, given a certain number
of measurements of an object (such as the raw energy
measured by the sensors in a detector, or its spatial co-
ordinates), of associating them to a specific instance: for
example a particle trajectory, a particle type, the parti-
cle jet that originates from the hadronization of a specific
parton (jet). In HEP, this problem has high dimensional-
ity, since the detector sensors are arranged in highly gran-
ular structures, the objects represent physics properties
and the object classes are typically exclusives (an energy
deposition belongs to one and only one trajectory). Two
examples are indeed represented by the reconstruction of
charged particles and the reconstruction of jets, together
with the identification of their properties.

The reconstruction of charged particle trajectories,

tracking, is an essential ingredient in event reconstruction
for HEP. Particle track candidates are built from space
points corresponding to energy deposits left by charged
particles - or hits - as they traverse the sensitive detector
material. The track parameters (e.g. position and cur-
vature) hereafter computed are used in subsequent pro-
cessing steps throughout the reconstruction and analysis
of data to compute physics observables.

In collider particle physics, a jet is a collection of stable
particles collimated into a roughly cone-shaped region.
Jets arise from the fragmentation of quarks and gluons
produced in high-energy collisions. During the collision,
the QCD confinement the quarks and gluons are sub-
jected to is broken, yielding a spray of color-neutral par-
ticles that can be experimentally measured in particle
detectors. Jets have played and are playing a fundamen-
tal role in collider physics. Events with three jets in e+e−

collisions demonstrated the existence of the gluon. Nowa-
days jets produced by the fragmentation of heavy quarks,
namely b and c quarks are crucial for several studies in
particular to determine the Higgs boson couplings. In
the latest years tools have been developed to disentangle
different kinds of jets.

a. Track Reconstruction Several current and future
HEP experiments will explore high intensity scenarios go-
ing to extreme regimes with thousand of charged particles
crossing a square centimeter of sensitive detector. Fur-
thermore, depending on the process under study and the
detector layout, each track can consist of a variable num-
ber of measurements. The multiplicity of possible track
candidates from the input space-points scales quadrat-
ically or cubically with the number of hits. Therefore
tight selections on the input space-points are required in
order to narrow down the search space. Nevertheless,
track reconstruction is one of the largest users of CPU
time in HEP experiments, strongly motivating the R&D
of novel approaches.

Several approaches have been proposed to address the
tracking problem and can be roughly divided into global
and local approaches. Global tracking methods approach
track reconstruction as a clustering problem, thus consid-
ering all the space-points at once, whereas local tracking
methods generally consist of a series of steps executed se-
quentially. Several studies have been performed for both
global [204, 205] and the local [206] methods, finding a
potential reduction of computational complexity for the
latter.

First proposals to solve the particle track reconstruc-
tion problem on a quantum computer focused on con-
verting the problem to a Quantum Unconstrained Binary
Optimization (QUBO) problem [207, 208]. This way, one
can group two (doublets) or three (triplets) hits from con-
secutive detector layers and binary values represent if a
given doublet or triplet corresponds to a particle track.
There have been several proposals in the literature on
how to determine the coefficients of the QUBO either
based on geometry or impact on the overall energy of the
QUBO [204, 205, 209]. In its most general form, one can
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write such a QUBO Hamiltonian as,

H =

N∑
i<j

Ji,jTiTj +

N∑
i=1

hiTi,

where in the case of triplets, Ti represents ith triplet
and T can be mapped to the Pauli-Z operator on the
ith qubit. Jij is the coupling coefficient between ith and
jth triplets and hi determines the strength of the field
on the ith triplet. Then, it is possible to use algorithms
such as Quantum Approximate Optimization Algorithm
(QAOA), VQE or Harrow-Hassidim-Lloyd (HHL) to
find the ground state of the Hamiltonian, which corre-
sponds to the desired solution. Although such a QUBO
Hamiltonian is sparse in general, it consists of at least
O(10k) sites for a real world problem, or O(500) in more
favourable scenarios with smaller occupancies such as the
LHCb Vertex Locator. The limited number of qubits
available currently restricts the Hamiltonian toO(1) sites
and therefore strategies to partition the Hamiltonian to
many smaller pieces are needed.

Recently, Ducket et al. proposed a method to solve the
triplet classification using a QSVM based approach [210].
In this method, spatial coordinates of each hit from the
triplet are encoded to quantum states that result in a
9-qubit circuit. Quantum kernel methods promise an
advantage for datasets with many features, therefore a
triplet based approach might not provide an advantage.
However, this method may outperform a classical kernel
method in cases where considering higher number of hits
are useful.

Classical Graph Neural Network (GNN) methods were
shown to have linear scaling with respect to the num-
ber of input space-points, which makes them a strong
candidate for future implementations of particle track
reconstruction algorithms [211]. Although there is no
formal proof that this scaling is linear, the empirical ev-
idence suggests so. It is likely that this improvement
comes from the parallelisation capacity of Graphics Pro-
cessing Unit (GPU)s. This means that there is still
a need for large GPU clusters. A quantum advantage
could be achieved if GNNs with similar characteristics
can be implemented on Quantum Computers. Recently,
it was shown that a quantum-classical hybrid Graph Neu-
ral Network (QGNN) approach is possible and it can
perform similar to the classical equivalent for up-to 16
qubits [212, 213]. However, understanding if this can be
realized at large scale requires a larger number of qubits.

The availability of a 100 ⊗ 100 device would enable
the study of larger local Hamiltonians with 100 sites and
give researchers a tool to investigate if QUBO based ap-
proaches are viable. Similarly, such a device would allow
us to implement QGNNs of sizes comparable to the clas-
sical state-of-the-art models.

Regarding local methods, although a full analysis chain
is presently unreachable due to hardware limitations, we
can nevertheless consider a complexity analysis to illumi-
nate the general evolution of the classical and quantum

approaches to the problem. It is not clear, in particu-
lar, whether all steps in the track or, in general, object
reconstruction may benefit from a quantum algorithmic
approach. This is the procedure originally followed, for
instance, by Wei et al. [214], which have estimated the
classical and quantum computational scaling of a well-
known (albeit unused) jet clustering algorithm. However,
since this algorithm is not the current standard used at
the LHC it is much more informative to estimate the
complexity of a current choice, namely the Combinato-
rial Track Finder (CTF) algorithm [215], which is the
tracking algorithm used by the CMS collaboration [216].
The underlying structure of the CTF, the combinatorial
Kalman filter [217], is used by several current track re-
construction algorithms [218–220] and the analysis can
easily generalized to most presently available algorithms.
This program has been followed by in [206] using the
algorithm as it is described in [215]. The conclusion is
that it is possible to reconstruct the same tracks (up to
bounded-error probability) with lower quantum complex-
ity by an adequate use of quantum search routines.

A 100⊗100 machine may allow for some progress along
the lines defined in [206], although it is necessary to in-
vestigate the number of qubits which can effectively be
used for the implementation of the program. Moreover,
since [206] is applicable to a hybrid classical/quantum ap-
proach it is possible to implement the program according
to the available resources. In any case, it is important to
bear in mind that in the short-term track reconstruction
algorithms will be quite limited by the input size, and
investment in QAOA or in jet clustering may be more
rewarding.

b. Jet Reconstruction and Identification Jet cluster-
ing algorithms aim at estimating the kinematics of the
particle that initiated the jet. Usually, these algorithms
are based on clustering schemes, which combines the ob-
served particles into a jet for further study.

Clustering algorithms have different properties and
characteristics that can make them more appropriate for
a particular task, such as the extraction of observables
or as a tool to extract specific properties of the final
state. An essential property of an optimal jet cluster-
ing algorithm is Infrared and Collinear (IRC) safety. An
observable is IRC if it remains unchanged in the limit of
a collinear splitting or the emission of an infinitely soft
(low momentum) particle.

Two main approaches have been pursued in clustering
particles into a jet: cone and sequential recombination
schemes. The first approach aims to find regions with
a high-energy flow and thus define rigid conic bound-
aries. In sequential recombination algorithms, particles
are clustered locally using a distance metric.

Jet clustering algorithms can be computationally ex-
pensive, as the execution time scales polynomially with
the number of particles to cluster. Speedups can be
achieved by considering the clustering problem from a
geometrical point of view instead of combinatorially. In
this way, sequential recombination algorithms can be ex-
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ecuted in O(N2) or even O(N lnN) complexity rather
than O(N3). Cone algorithms could be implemented ex-
actly (and therefore made IRC safe) with O(N2 lnN)
rather than the expected O(N2N ) complexity.

Quantum-assisted algorithms have been explored to
reduce the computational overhead of these clustering
routines. The first application of quantum-assisted algo-
rithms to the task of clustering particles into a jet was
introduced in [214]. Two clustering techniques were put
in place for the particular case of electron-positron colli-
sions and inspired by the calculation of thrust [221, 222],
an event shape quantity that allows for the partition of
event particles into two hemisphere jets. The first ap-
proach targeted the universal quantum computing set-
ting based on Grover’s algorithm. In addition, a QUBO
formulation for thrust was developed, suitable for quan-
tum annealing. Classically, the calculation of thrust can
be costly, scaling as O(N3) [223] for an event with N par-
ticles, or using the improved method introduced in [224],
as O(N2 logN). The thrust-based QUBO formulation
was benchmarked in [225], using the D-Wave Advantage
1.1 QPU, and compared to classical QUBO-solving tech-
niques such as simulated annealing and annealing opti-
mization subroutines like reverse annealing. Results from
these studies revealed the limitations of current quan-
tum annealing devices in terms of connectivity. QUBO
formulations involving many spin variables and all-to-all
connectivity, like the thrust problem, perform poorly on
currently available quantum annealers. An extension to
the QUBO formulation for thrust calculation was pre-
sented in [226], based on the angular distance between
two particles in a given event and penalizing the assign-
ment of two particles located on the same hemisphere of
the partition. Results from the hardware deployment of
these studies were limited to a low number of annealing
runs due to limited access to the QPU.

Algorithms based on digital quantum computing have
also been proposed; however, the algorithms in [214, 227]
are not suitable for implementation on noisy devices
due to the need for a QRAM-like architecture to ac-
cess particle information in parallel. Another promis-
ing study [228] deals with the quantum version of three
clustering algorithms found in the classical literature: k-
means [229] (a quantum version of this algorithm is used
in Ref. [227]), affinity propagation [230], and the kT jet
clustering algorithm [231]. Two quantum subroutines
are introduced: the first computes the Minkowski dis-
tance between particles, and the second tracks the max-
imum in a long-tailed distribution. For both these sub-
routines, the authors prove polynomial speedups as com-
pared to well-known classical algorithms. The quantum
algorithms were applied to simulated data for a typical
LHC collision setting and obtained efficiencies compa-
rable to their classical counterparts. In particular, the
quantum-kT version is a conceptually more straightfor-
ward algorithm with a similar execution time compared
to subroutines in the FastJet library [232].

Jet tagging, the identification of the flavor of the quark

that originated the jet, is another aspect of jets physics
that experimental physicists are continuously improving.
For example, in the determination of the Higgs boson
couplings to b and c quarks, the jet tagging efficiency
and purity determine the actual size of the dataset use-
ful for the measurements and, therefore, their accuracy.
Jet tagging is based on global jet characteristics and on
each jet’s particle properties. In principle, it therefore re-
quires a large number of features which means a high di-
mension dataset. The study reported in [233] limited the
data representation to a few properties to cope with the
low number of qubits available and short circuit depth.
As already mentioned in the introduction of this section,
this is the approach often used in experimental HEP, and
therefore the performance of the QC algorithms is by def-
inition limited and the comparison with classical methods
is performed adopting the same data-set dimension. Two
different feature encodings have been tested: the angle
encoding is used when a two feature data-set is used while
for the 16 features the amplitude encoding is exploited.
Even though the exercise is quite simple, it showed that
in the training phase, the QML method reaches optimal
performance with a lower number of events with respect
to the classical ones. The limited access to the hardware
resources did not allow an extensive study of the noise
impact which was evaluated only for the 2 qubits case.
This study could largely benefit from much more power-
ful hardware, in particular the 100⊗ 100 IBM hardware.
Instead of re-proposing the same exercise, it would be
possible to design a new circuit where the entanglement
entropy can play an important role. In fact, jet tagging
features correlation is considered as classical correlation
while in QML these can be understood and included in
the circuit optimization improving the classification per-
formance. A further step forward could be to perform
the jet classification study on data obtained in proton-
proton collisions and in Monte Carlo simulated events.
Collider data may exhibit quantum characteristics, not
visible in simulation. That could happen due to the lim-
ited knowledge of jets formation and evolution which is
regulated by the non-perturbative QCD and described
only by models in the simulation. Such effects, if there,
are currently absorbed by the systematic errors in the jet
reconstruction quantities.

3. Interpretable Models and Inference

In this section we review the use of quantum models
as inference tools to extract the characteristic proper-
ties of a dataset in HEP. We give two examples of such
models: characterising the non-perturbative structure of
hadrons through Parton Distribution Functions (PDFs),
and estimating the Wilson coefficients of Effective Field
Theories (EFTs) and their correlations. We emphasise
the potential of these tools to enable precision modelling
of physical phenomena and provide a first step towards
being able to bridge the fields of quantum computing and
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quantum information in extracting quantum descriptors
of HEP processes from models learned from data.

In high-energy physics, perturbation theory is used
to calculate particle interactions at high energies [234].
These perturbative methods allow for the calculation of
scattering amplitudes as a series expansion in powers of
the coupling constant. However, as the energy of the in-
teraction decreases, the coupling constant becomes large
and the perturbative expansion breaks down [235]. This
results in a non-perturbative regime where the underly-
ing physical processes are not easily calculable, and must
instead be obtained through experimental measurements
or numerical simulations [236]. Characteristic functions
that capture the essential features of the underlying phys-
ical process can be employed to represent the relative
probability of a particular physical process as a sum of
simpler, more tractable functions. The choice of basis
functions and coefficients is critical in constructing an
accurate representation of the underlying physical pro-
cess as they must be able to accurately characterize the
process in both the perturbative and non-perturbative
regimes, as well as any additional physical constraints
that may be present.

PDFs are an example of non-perturbative effects that
are necessarily characterised by such approximations
from data [237]. PDFs describe the probability distribu-
tion of the momentum fraction carried by the quarks and
gluons inside a proton. The need for PDFs arises from
the fact that the proton is a composite particle made
up of quarks and gluons that are constantly interacting,
which makes it impossible to calculate the momentum
distribution of these partons using perturbative methods
alone. Nonetheless, there are known constraints on the
form of PDFs that can be derived from the fundamen-
tal principles of quantum chromodynamics (QCD), and
their predictions are highly constrained by experiment.

The accurate estimate of PDFs is vital to all measure-
ments in experimental collider physics, as they are used
to predict the rates and distributions of processes [238].
Uncertainties arise from the limited precision of how ex-
perimental data is used to constrain the PDFs, as well as
from theoretical uncertainties in how to extract pertur-
bative estimates from the fitted PDFs. Quantum com-
puting affords us new avenues to address both of these
shortcomings by providing characteristic functions that
may better represent the nature of the process they are
used to represent.

A recent study investigating an approach based on the
use of a Parameterized Quantum Circuit (PQC) was ex-
plored for estimating the functional form of PDFs [239]
from data. The PQC approach aims to find an ansatz
for representing the PDFs as a PQC, the parameters of
which are estimated using a classical optimization algo-
rithm to minimise the difference between the predicted
and experimental data. This is a promising avenue for
leveraging the expressive power of PQCs to efficiently
learn solutions to classically intractable problems. Pre-
liminary results using the PQC approach are encourag-

ing, showing good agreement with existing Parton Dis-
tribution Function (PDF) fits obtained through classical
optimization techniques. This represents an exciting first
step towards using quantum algorithms for PDF estima-
tion and highlights the potential of quantum computing
for solving problems in high-energy physics. However sig-
nificant work is still needed to leverage the quantum na-
ture of the problem. In this construction, the PDFs being
estimated are still classical approximations to an inher-
ently quantum system and as such the possible advan-
tages of such a methodology are purely computational.
It is foreseeable that quantum functions that characterise
classically intractable processes such as these are possi-
ble in a way that, although simplified with respect to a
fully numerical model (e.g. from lattice QCD), would
give a notable improvement over classical models when
compared with data.

In contrast to experimental measurements in which the
exact prediction of a given standard model process is
computed, EFTs provide a framework for modelling com-
plex physical processes in terms of a hierarchy of simpli-
fied interactions, characterised by a set of Wilson coef-
ficients [240]. These coefficients represent the coupling
strengths of various operators that encode the effects of
high-energy physics and can be determined through a
process of matching with experimentally measured ob-
servables. While the precise values of the Wilson coeffi-
cients cannot be computed exactly, they can be approx-
imated through a process of functional approximation,
in which an ansatz is made for the form of the Effective
Field Theory (EFT) such that the coefficients can be es-
timated from experimental data. This EFT approach is
similar in nature to the fitting of PDFs, as both involve
characterising complex physical phenomena in terms of
a simplified set of paremetrised functions. In a recent
study [241], researchers proposed a new method for es-
timating Wilson coefficients using a quantum computer.
The method involves using a quantum computer to en-
code the EFT predictions and experimental data into a
QUBO [242] optimization problem, with coefficients of
the cost function determined by a Hamiltonian represen-
tation of a set of given coefficients. The QUBO problem
is then solved on a quantum annealer to obtain the best-
fit values of the Wilson coefficients. A primary goal of
this method is that the optimization of the problem on a
quantum computer can provide a more efficient and ac-
curate way of estimating the Wilson coefficients than is
possible with classical methods. The Hamiltonian is con-
structed using the parametrisation of an effective field
theory approach, which allows for a systematic expan-
sion in powers of the inverse of the mass scale of the
new physics being probed. The Standard Model Effec-
tive Field Theory (SMEFT) framework [243] used in this
example contains a large number of parameters, making
it challenging to extract information about the underly-
ing physics. In this case the predictions for a reduced
set of parameters are computed classically and only the
relationship between the coefficients and the measure-
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ments modelled in the hamiltonian, not the dynamics of
the EFT operators themselves. Through a careful under-
standing of the Hamiltonian representation of this pro-
cess and its solution using QML, it might be possible to
reduce the number of parameters needed to describe the
system by identifying a smaller set of effective param-
eters that capture the essential physics and to identify
correlations between different observables and effective
couplings.

Whilst much of the development of quantum algo-
rithms and in particular QML is focused on identifying
and solving computational bottlenecks present in tra-
ditional methodologies, the goals identified in these se-
lected benchmark applications are those that leverage
properties of QML models to better interpret data from
experimental high-energy physics in new ways. Several
studies have begun towards this goal, however these ini-
tial steps provide only hints to which a complete under-
standing of how QML can be used to leverage a quantum
interpretation of the information contained in data from
experimental particle physics.

4. Generative Models for Simulation

Other natural applications of generative modelling, are
detector simulation and event generation. Monte Carlo
simulation of collider detector events is one of the most
computing expensive tasks within the experiments data
processing chain. Recent estimates suggest more than
50% of the LHC computing grid (WLCG) is spent on
simulation tasks directly or on the simulated data re-
construction, i.e. the extraction of high-level features
from simulated data [244]. The next generation detectors
for the High Luminosity LHC and future colliders, with
their larger sizes, higher sensor granularity and increased
complexity, will be even more demanding in terms of
computing resources for data simulation and reconstruc-
tion [245]. This fact has sparked, over the years, intense
research on alternative approaches, generally designated
as fast simulation strategies in contrast to highly accu-
rate Monte Carlo-based simulation.

Fast simulation, typically trading some level of accu-
racy for speed, relies on parametric modelling of detectors
response [246] or, more recently, on deep generative mod-
els [247–249] that learn multi-dimensional, conditional
probability distributions. In most cases, the focus is on
the detector response itself: the deep generative mod-
els are trained to reproduce the detector output which is
then processed in the same fashion as Monte Carlo simu-
lated data. This approach can produce very realistic out-
put, both in terms of quality of the individual events and
in terms of sample diversity. In other cases direct gener-
ation of high level features, typically used at the analysis
level, is preferred, thus skipping the entire reconstruction
process [250]. This approach has the advantage of being
computationally lightweight and flexible since the deep
learning models learn directly the particles features and

correlations in the final state of interest, taking into ac-
count all experimental effects. Its main limitation is the
fact the output is inherently analysis specific, and cannot
be used outside the scope it was initially designed for.

At the same time, several studies have started inves-
tigating quantum (or hybrid quantum-classical) imple-
mentations of generative models. A few examples are
described in [251] and references therein. In most cases
quantum architectures inspired by classical models have
been studied: for example, implementations of Quantum
Generative Adversarial Network (QGAN) or QAE. Par-
ticularly interesting is the case of Quantum Circuit Born
Machine (QCBM) [252] which instead are quantum gen-
erative models that do not have a classical counterpart
and leverage the Born measurement rule during the sam-
pling process. As in the classical domain, quantum ar-
chitectures have been used to address two main types of
applications: detector output simulation and final state
generation. In both cases, but in particular for detec-
tor output simulation, the main limitation of the current
models lies in the dimensionality of the simulated out-
put. Realistic applications to particle physics detectors
require generative models to learn distributions whose
size scales with the number of detector sensors.

Current models can generate accurate simulations for
very small (10-sized) setups, using one qubit to represent
a detector sensor. Typically, reversible data compression
techniques, such as auto-encoders, can be used to bring
down the original simulation to a size that is manageable
by the quantum system: the classical encoder network
produced a reduced latent representation which is then
learned by the quantum generative model. A classical
decoder network is then used to transform the synthetic
output from the latent dimension to the original one.
The expected advantage of using a quantum algorithm
in this task would come from a more accurate and gener-
alisable learning of the latent representation. It is clear,
however that a most interesting development in this di-
rection would require reducing the weight of the classical
data dimensionality reduction step with respect to the
quantum algorithm. In this context, a 100 ⊗ 100 ma-
chine would enable the simulation of far more realistic
use cases.

Aside from the sheer detector size, the need for dis-
cretization also affects how realistic quantum generative
models-based simulations can be. In most cases, our de-
tectors produce continuous features, while qubits natu-
rally map to discreet quantities so the size of the qubit
system can have an impact on the detector simulation
resolution. These same problems can affect the direct
generation of high-level features, albeit at a different
scale: in this case quadri-momenta (and possibly angular
correlations) of particles produced in scattering or decay
processes are in the range of a few tens, instead of a
few thousands, making the problem much more manage-
able on near term quantum systems. In this case, ex-
treme care should be put into correctly describing cross-
correlations among particles, thus good connectivity and
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the possibility to reproduce complex entanglement pat-
terns over multiple qubits become essential.

IV. ALGORITHMS, METHODS AND
LIMITATIONS

A. Quantum Algorithms for Quantum Dynamics

The development of quantum algorithms for the sim-
ulation of quantum dynamics is a very active field of re-
search, with potential applications covering a broad spec-
trum across the physical sciences [253, 254]. A plethora of
powerful methods has been developed over the past years,
which can generally be classified as either decomposition-
based or variational in nature [254]. Techniques be-
longing to the former category aim at realising a tar-
get unitary evolution U(t) = e−iHt through a decompo-
sition into elementary quantum logic operations. This
approach typically yields rigorous scaling laws, a priori
error bounds and, most importantly, provides a system-
atic way of exchanging resources (i.e., circuit depth, gate
counts, ancilla qubits) for accuracy. Examples of decom-
position methods include product formulas (see below),
linear combinations of unitaries [255], quantum signal
processing [256] and qubitization [257]. On the other
hand, variational strategies address the task of approxi-
mating U(t) by resorting to parametrized quantum cir-
cuits, for example implementing time-dependent ansatzes
or learning effective partial representations of the dynam-
ics. This often reduces the circuit complexity compared
to decomposition methods, thus lowering the experimen-
tal requirements for implementations on current noisy
quantum processors. However, such an advantage comes
at the cost of some classical overhead (e.g., optimiza-
tion, additional measurements) and within a more heuris-
tic framework where accuracy guarantees are harder to
obtain. Both decomposition and variational algorithms
have been applied for specific dynamical studies in LGT
on quantum computers [25, 258].

1. Product Formulas

Among decomposition methods, product formu-
las represent the simplest and most widely adopted
paradigm [69, 78, 259]. In their basic implementation,
these rely on the general Trotter approximation rule [260]

e−iHt = lim
n→∞

( M∏
i

e−iHit/n

)n

(11)

where H =
∑M

i Hi. At first order and for every finite
choice of n, one has

e−iHt ≃
( M∏

i

e−iHit/n

)n

+O
( M∑
i>j

∥[Hi,Hj)]∥t2/n
)
, (12)

i.e., the decomposition error amounts to O(M2t2/n).
This may be systematically reduced either by choosing
a larger n or by employing higher-order PF, for which
the error becomes O((Mτ)2k+1/n2k) at order 2k (k ≥ 1)
(see also Sec. IVA3). In both cases, better theoreti-
cal accuracy is obtained in return for an increased gate
count. Further improvements are possible, based, e.g.,
on randomization and adaptive techniques [261–264] or
on the use of linear combinations of PF (multi-product
formulas) [174, 265], which can reduce Trotter errors. Im-
portantly, PFs can also be employed for simulating time-
dependent Hamiltonians [266–268].

2. Variational Approaches

Parametrized quantum circuits can be used to tackle
quantum dynamical problems by either resorting to well-
established variational principles or by recasting them as
optimization tasks. In the first case [269], one builds a
time-dependent wavefunction ansatz spanning a suitable
manifold in the Hilbert space of the target system and
propagates the parameters by solving a classical Equa-
tion of Motion (EOM). For sufficiently well-behaved dy-
namics, the trajectory of a specific quantum state in time
can be approximated with a number of parameters that
is significantly smaller than the dimension of the full
space. This in principle results in a simulation whose
cost in terms of quantum resources – and specifically cir-
cuit depth – is constant, or only increases moderately,
with time (in contrast to, e.g., PFs). As an example, for
an ansatz |Φ(θ(t))⟩ ≡ |Φ⟩ evolving under the action of
a Hamiltonian H, the application of McLachlan’s varia-
tional principle leads to a set of differential equations for
the parameters of the form [269]

Mθ̇ = V (13)

where

M = Re

(
∂ ⟨Φ|
∂θi

∂ |Φ⟩
∂θj

+
∂ ⟨Φ|
∂θi

|Φ⟩ ∂ ⟨Φ|
∂θj

|Φ⟩
)

(14)

and

V = Im

(
∂ ⟨Φ|
∂θi

H |Φ⟩ − ∂ ⟨Φ|
∂θi

|Φ⟩ ⟨Φ|H|Φ|Φ|H|Φ⟩
)
.

(15)
The matrix elements of M and V have to be evalu-
ated through measurements on the quantum processor
where the ansatz is prepared, while Eq. (13) is integrated
classically. Two main versions of the VTE algorithms
have been devised and applied in quantum simulations:
the variational Quantum Time Evolution (varQTE) al-
gorithm for real-time propagation, and the variational
Quantum Imaginary Time Evolution (varQITE) algo-
rithms for ‘dynamical’ ground state preparation (for a
review see [254]).
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This VTE algorithm is particularly attractive in those
cases where a direct decomposition of unitary Hamilto-
nian evolution becomes quickly demanding with grow-
ing system size, such as, e.g., in first quantization [270]
or when dealing with fermionic/bosonic degrees of free-
dom [271–274] and gauge fields [25, 47]. In practice,
one crucial ingredient is the choice of the ansatz, which
ideally should incorporate physical intuition (e.g., re-
specting symmetries and/or conservation laws) and good
mathematical properties (e.g., concerning the form of the
tangent space associated with the parametrized manifold
along time-evolution paths). While several promising
strategies for ansatz construction have been proposed,
including adaptive ones [275], it remains challenging, in
general, to correlate in a systematic way ansatz expres-
sivity with simulation accuracy and performances, if not
with a posteriori error bounds [276]. The application
of VTE is also limited by the high numerical sensitivity
associated with the solution of Eq. (13) via matrix inver-
sion and by the large number of measurements required
to construct M and V [273, 276].

In parallel to the standard VTE algorithm, numerous
other approaches are being explored. For instance, vari-
ational quantum methods have been employed to learn a
(partial) diagonalization of the short-time evolution of a
system [277–280] and to compress the circuits required to
implement a short time-step on a given state [281–284].
Additional proposals aimed at implementing near-term
quantum simulations include: quantum-assisted methods
which perform all necessary quantum measurements at
the start of the algorithm instead of employing a classical-
quantum feedback loop [285–287], methods based around
Cartan decompositions [288, 289] and approaches using
Krylov theory [290].

3. Algorithmic Limitations

Of the two approaches for performing time-evolution
dynamics, it is considerably more straightforward to
characterise the (near-term) simulation errors associated
with Trotterisation-based methods. For a fixed total
time T , the discretization in n time-intervals (dt = T/n)
of the time-evolution operator according to Eq. (11)
(i.e., using first-order Trotter expansion) will lead to a
residual error ϵ of O(αc(T/n)

p+1) with p = 1 where
αc =

∑
i,j ||Hj , [Hj ,Hi]|| (see [291]). This implies that

one would require n×O(Mαcomm(T/n)
2) gates to achieve

the desired accuracy, where M is the number of Pauli
strings building up the system Hamiltonian. On the
other hand, a practical implementation of the Trotter
expansion in near-term, noisy, quantum computers will
need to face the additional errors arising from the gate
infidelities. Assuming only errors induced by the 2-qubit
CNOT operations, ϵ2g, the overall Trotter error will scale
as

ϵTrotter ∼ O(αc(T/n)
2 + (n0ϵ2g)

n) (16)

where n0 is the number of 2-qubit operations required for
the circuit implementation of the operator eiHt, for fixed
t. We therefore conclude that for the Trotter formula
there must be an optimal value of the the discretization
variable n, that we name n∗, which minimizes the overall
error.
In the case of the VTE algorithm, the quantum cir-

cuit is of a constant depth, while the number of gates
required for its implementation depends on the number
of degrees of freedom necessary to produce a suitable
representation of the subspace that spans the dynamics
of the system. Assuming the knowledge of a variational
form that can be systematically improved by adding cir-
cuit layers, L, one can - in principle - achieve a desired
accuracy as a function of the circuit depth. In the case of
LGT, one could for instance employ a recently proposed
Hamiltonian inspired variational Ansätze [47], which has
the advantage of combining a physical motivated varia-
tional circuit with the possibility of naturally enforce dy-
namical constrained, such has Gauss law. On the formal
side, Ref. [276] has investigated error bounds associated
with VTE. However, unfortunately, and in contrast to
the Trotter expansion and alike, there appears to be no
systematic ways to assess a priori the scaling of the vari-
ational error in VTE algorithm as a function of the total
simulation time, T , or circuit layers, L. Preliminary stud-
ies [292] showed that in the case of QED calculations in
(1+1)D dimensions the number of Hamiltonian-inspired
layers to reach a desired accuracy increases rapidly with
the dimensionality of the problem, approaching the num-
ber of gates required to implement the Trotter formula
already with 10 to 15 sites. Finally, it is also important to
mention that the quality of the VTE approach depends
on the accuracy in the solution of the system of linear
differential equations in Eq. (13).

4. Near-term Applications

We would like to conclude this section with a rough
estimation of the resources needed for the quantum sim-
ulations. For the QED static study we take ground state
properties as our main target (e.g., the important phase
structure for which high precision is not necessarily re-
quired). Also for QED dynamics we are interested in the
qualitative behaviour of scattering particles. Therefore
the entries presented below concern only the number of
qubits and layers required (within the 100 ⊗ 100 chal-
lenge constraints) and do not refer to the precision of the
solutions or the algorithms run times.

B. Quantum Machine Learning

1. Opportunities for Quantum Advantage

QML is an area of particular interest in experimen-
tal particle physics encompassing many of the algorithms
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TABLE I. For (2+1)D QED, we consider a minimum linear lattice size, L, of 4 and a maximum of 8; this leads to 8 to 16
qubits to describe the fermionic d.o.f. and 10/15 gauge links, which leads - with truncation of the gauge fields l = 2, 3 - to
20/100 and 30/150 qubits, respectively. The final number of resources is reported in the table. For (1+1)D QED dynamics
we give a suitable number of lattice points which allows us to study the time evolution of scattering particles; For two flavor
neutrinos we consider a direct mapping to qubits, the cost is based on a first order PF; for the largest system with 40 neutrinos
the CNOT count would still be 2340 with depth 120.

Systems Phys. size (min/max) No. qubits (min/max) Alg. No. CNOT layers

(2+1)D QED static 4x4/8x8 sites 30/160 VQE/varQITE ∼ 10/100
(1+1)D QED dynamics 12/20 sites 30/100 varQTE/Trotter 20/100

Collective Neutrino Oscillations 10/40 neutrinos 10/40 VTE/PF 30/120

described in this section. In general terms, two main ap-
proaches have emerged in the development of quantum-
enhanced machine learning: the role of the quantum com-
puter as an accelerator of otherwise established classi-
cal learning methods and the design of genuinely quan-
tum methods, which do not mimic classical algorithms.
This first method includes the relatively straightforward
application of QC methods to speed up an otherwise
computationally costly training method [293]. Such ap-
proaches include classes of methods, dubbed quantum
linear-algebra based methods, in which the principle goal
is to represent high-dimensional data in states of just
logarithmically many qubits. This approach may allow
even exponential speed-ups but comes with numerous
caveats [294], most notably requiring some means of gen-
erating the required data-bearing quantum states, which,
if done naively, already nullifies any possible advantage.
Solutions to this may exist e.g. by the use QRAM [295],
but in any case these methods are mostly considered only
in the context of large-scale fault-tolerant quantum com-
puters.

In contrast, the design of genuinely quantum methods,
may yet offer advantages based around the idea of pa-
rameterised quantum circuits (PQC-based methods) as
the key building block of the model. The basic examples
here include the quantum support vector machine [200]
and the closely related quantum kernel methods [201],
and, more generally, so called quantum neural network
models. It is important to note that learning separations
(so, provable exponential advantages) for learning using
quantum models have already been proven in most learn-
ing settings [296], subject to standard assumptions in
complexity theory, and it can be shown [297] that these
separations may be much more common when data is
generated by a quantum process (under slightly stronger
computational assumptions).

In general, the quantum model attains the form
fθ(x) = Tr[ρ(x, θ)O(x, θ)], where the observable O is
most often fixed and independent from data (x) or train-
able parameters (θ), and ρ(x, θ) is prepared by apply-
ing a parametrized circuit on some fiducial state, e.g.
ρ(x, θ) = U(x, θ)|0⟩⟨0|U(x, θ). In so-called linear models
such as kernels and QSVMs, in contrast to data reupload-
ing models [298], the state depends only on x, and this
constitutes the loading of the data. Note, the targeted
advantage in these settings is not in the dimensionality

or number of data points, but rather in the quality of
learning that can be achieved.
The mapping x 7→ ρ(x, θ), a process which is typically

independent of the setting of the θ parameters, consti-
tutes the data loading, in which the key questions here
are in finding a suitable mapping which will allow for a
favourable data processing. Unlike in the case of quan-
tum linear algebra approaches, the dimensionality of the
state ρ(x) is typically independent from the data dimen-
sionality. In particular, as was proven in [298], already a
single qubit line can express arbitrary multi-dimensional
functions, given sufficient depth and data-re uploading.
This is analogous how 1 hidden layer neural nets allow
for functional universality [299], but nonetheless using
multiple layers allows the more efficient access to use-
ful function families. Using more qubits allows for more
expressive function families at shallower circuit depths,
and indeed qubit number scaling as a function of data
dimension is necessary for any potential of a quantum
advantage (as constant-sized quantum circuits are simu-
latable in polynomial time in the depth).
Indeed, the minimum is superlogarithmic scaling of the

qubit numbers in the dimension of x, and linear scalings
already can ensure the exponential cost of the classical
simulation of the quantum model using best known clas-
sical algorithms. This freedom also stymies any good
approximations of how many qubits would be necessary
to achieve good performance of quantum learning algo-
rithms of this type; it is easy to construct models that are
not classically simulatable, but at present it is not known
how the increase of qubit number influences the quality of
outcomes, and thus eventually outperform classical mod-
els. In practice, it has been suggested that a linear scaling
between qubits an input dimension may be a good start-
ing point [201], however this necessitates the use of either
classical dimensionality reduction techniques, or circuit
cutting techniques [300] for any real-world applications
in this field.

2. Algorithmic Limitations

A fundamental limitation to the scaling up most PQC-
based machine learning methods is the so-called barren
plateau phenomenon, where the gradients [301] of the
cost function vanish exponentially with n. On such bar-
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ren plateau landscapes, the cost function exponentially
concentrates about its mean, leading to an exponentially
narrow minima (a narrow gorge) [302]. Hence, on a bar-
ren plateau, exponential precision is required to detect
a cost minimizing direction and therefore to navigate
through the landscape. Thus minimizing the cost typi-
cally requires an exponential number of shots, even if we
use gradient-free [303] or higher-derivative [304] optimiz-
ers. While this phenomenon was originally identified in
the context of variational quantum algorithms and quan-
tum neural networks, it has recently been shown that
exponential concentration is also a barrier to the scala-
bility of quantum generative modeling [305] and quantum
kernel methods [202].

A number of causes of barren plateaus have by now
been identified, including using variational ansatze that
are too expressive [301, 306–308] or too entangling [309–
311]. However, even inexpressive and low-entangling
Quantum Neural Network (QNN)s may exhibit barren
plateaus if the cost function is ‘global’ [312], i.e. relies
on measuring global properties of the system, or if the
training dataset is too random or entangled [313–316].
Finally, barren plateaus can be caused by quantum error
processes washing out all landscape features, leading to
noise-induced barren plateaus [317, 318].

Several methods to mitigate or avoid barren plateaus
have been proposed. The simplest is perhaps to use a
shallow ansatz along with a local cost function [301, 312];
however, it is questionable whether physically interest-
ing and classically intractable problems can be solved
within this regime. More promising is the ongoing
search for problem-inspired ansatze [319–323], problem-
inspired initialization strategies [324], pre-training strate-
gies [325–330] or layerwise learning [331]. Of particular
interest currently is the field of geometric quantum ma-
chine learning, which provides a group-theoretic strategy
for building symmetries into QNNs [332–335]. In the con-
text of LGT simulations, this approach could be suitable
since we can utilize the (local and global) gauge sym-
metry (see [47] for a gauge invariant construction of the
ansatz, though it is not clear if this ansatz can mitigate
the barren plateau problem).

Beyond barren plateaus there is a growing aware-
ness of the problems induced by local minima [336–339].
Namely, it has been shown that quantum cost landscapes
for a large class of problems can exhibit highly complex
and non-convex landscapes that are resource intensive to
optimize [336, 337, 339]. Thus constructing strategies to
mitigate and avoid local minima [338] is another impor-
tant research direction to ensure the successful scaling up
of hybrid variational quantum algorithms.

3. Near-term Applications

Given access to a noiseless 100-qubit system, assuming
the capacity to train the model, it is in principle possible
to tackle very high dimensional systems, and also learn-

ing problems where the underlying physics generating the
data is very sophisticated. In essence, any system where
a 100-qubit quantum simulation would be able to cap-
ture relevant physics, could in principle be captured by a
100-qubit learning model. In practice, as mentioned, this
will only be possible if the PQC architecture is carefully
tailored to the learning task to enable the trainability of
the system.

As shown in section III B architectures inspired by the
properties of classical deep neural networks have been
successfully trained in the quantum context: quantum
hierarchical classifiers, such as TTN and MERA, for ex-
ample, have been successfully trained to reproduce two-
dimensional images representing the output of a HEP
detector [340–342], quantum convolutions achieved op-
timal results for image analysis and image generation
while mitigating the problem of barren plateaus [343].
A 100 ⊗ 100 machine could be used to understand to
which extent a QCNN could reproduce the hierarchical
learning of classical CNN, before incurring into limita-
tions mentioned in the next subsection.

While a graph based interpretation of HEP data had
been tested for a relatively small setup in the field of
particle trajectory reconstruction, interesting quantum
graph implementations have been proposed [344] and
could be tested in conjunction to point-cloud interpre-
tation of HEP data for applications ranging from track-
ing to jet reconstruction and jet tagging to event gener-
ation of matrix element calculations. Quantum equivari-
ant neural networks are also under study. Examples im-
plementing spatial symmetries (rotations or reflections)
have shown great potential on image related tasks and
are being studied on HEP dataset as well. The case of
physics symmetries, equally, if not more interesting, is
also very promising, although for certain applications in
classical data processing, a major challenge is represented
by the difference existing between he original symmetries
underlying the quantum process and the remnants acces-
sible through measurements and observables. An appro-
priate choice of loss functions and learning process will
determine the task PQCs can be trained for.

As explained throughout this paper, generative mod-
els are among the most powerful and versatile architec-
tures that could be studied on a 100 ⊗ 100 machine: in
particular, it should be possible to move from hybrid to
fully quantum version of the more complex topologies
such as QGAN or QAE. Designing a mechanism for ef-
ficiently reproducing attention on quantum states, could
pave the way for the implementation of transformers,
which are among the most powerful architectures exist-
ing today in the classical domain. Similar considerations
can be made in the choice of feature maps and kernels
for kernel-based methods such as quantum support vec-
tor machines, which together with variational algorithms
are used classification, clustering or anomaly detections
problems, in the frameworks of both supervised or unsu-
pervised learning.
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V. CONCLUSIONS AND OUTLOOK

In this paper we have described applications from ex-
perimental and theoretical high-energy physics where
quantum computing has the potential to show a bet-
ter performance than their classical counterparts. The
selected applications were chosen also with respect to
IBM’s 100⊗100 challenge and, where possible, a resource
estimate was made. We note that the given applications
are by no means complete and should serve as examples
which are of very high interest for the high-energy physics
community. We emphasize that this work should serve
as an initial step by the present authors for exploring the
potential of quantum computing for high-energy physics
and we expect that the community of high-energy physi-
cists working on this will substantially grow in the future.

Concerning the quantum algorithms proposed for the
applications outlined in the theory section (IIIA), we
have identified quantum dynamics as one of the main
targets because of its relevance in the field of HEP, e.g.,
in scattering phenomena, string breaking, quenching or
dynamical properties of phase transitions. In fact, the ex-
ponentially growing costs of the corresponding classical
approaches combined with the availability of well-tuned
quantum algorithms make quantum computing a very
promising tool for tackling problems in quantum dynam-
ics. As already outlined in the theory section in table I,
such quantum dynamics applications are indeed compat-
ible with the 100⊗ 100 challenge. Besides the dynamical
aspects of theoretical HEP models applications we have
also described static situations where quantum comput-
ing could lead to a better performance. These include
abelian and non-abelian lattice gauge theories supplied
with topological terms or non-zero fermion density or in-
vestigations of neutrino oscillations. While for these cases
quantum computing has clearly an advantage over clas-
sical Markov Chain Monte Carlo methods it remains to
be seen, whether it will have advantages over tensor net-
work approaches, e.g. when taking the continuum limit
or close to a phase transition.

In this paper, we have identified and proposed concrete
examples of low (1+1)D and (2+1)D theoretical models
of HEP (and in particular lattice gauge theory) which
are particularly hard classically due to the level of the
entanglement produced, but still preserve a great physi-
cal relevance as prototypes for understanding fundamen-
tal dynamic but also static aspects of the laws of Nature.
In the path towards large-scale simulations, we propose
the development of hybrid quantum-classical algorithms,
which can optimally leverage the advantages offered by
the two complementary computational paradigms; for in-
stance, the combination of TN with quantum circuit rep-
resentation of the system wave function can offer a unique
opportunity for enabling the simulations of strongly en-
tangled systems for longer time scales or close to phase
transitions.

We consider the here proposed models as an interme-
diate step towards eventually reaching (3+1)D theories

as actually needed for studying the standard model of
HEP. Besides the fact that the here considered lower di-
mensional models are of a high interest by themselves,
we are convinced that investigating them with quantum
computing can significantly help to develop algorithms
and methods for studying their (3+1)D counterparts.
And, it is a really fascinating outlook to explore phases
of QCD where no one has looked before such as the very
eaerly universe or when the strenghts of a topological
term becomes large. In addition, it would allow to study
scattering phenomena in a fully non-perturbative fash-
ion opening completely new insight to the physics of ar-
ticle collisons and shed light on the transition of confined
phase of QCD to the quark gluon plasma.

A wide variety of QC applications are anticipated in
quantum simulations and HEP experimental workflow,
as described in the earlier sections. Quantum simula-
tions of simplified LGTs in the Standard Model, such
as (2+1)D QED or (2+1)D SU(2) theory, are potential,
well-motivated applications for near-term quantum com-
puters. For the experimental side, QML is a major tech-
nique to exploit quantum computing in the applications
such as signal processing and detector reconstruction.
However, as mentioned in Section III B, when considering
QML for processing classical experimental data, the data
encoding into a quantum circuit is a big challenge, in par-
ticular for future colliders where an enormous amount of
data will be produced. Moreover, the data encoding is
also known to be one of the critical processes that cause
barren plateau.

This motivates us to explore the possibility of utiliz-
ing quantum data in the future as a promising route to
directly exploit quantum properties encoded in quantum
simulation and HEP experimental data. From a theo-
retical perspective, understanding the power of quantum
data for learning quantum states has received a lot of
attention. There has been a sequence of works in tomog-
raphy, wherein a learner is given copies to an unknown
n-qubit quantum state ρ and needs to learn ρ well-enough
(up to ε-trace distance); here the sample complexity was
pinned down [345, 346] to Θ(22n/ε2). However, the ex-
ponential nature of learning an unknown quantum state
is undesirable; there have been works that have looked at
restricted classes of states and shown that they are learn-
able using polynomially many copies of the states, such
as stabilizer states [347], Gibbs states of local Hamiltoni-
ans [348], matrix product states [349]. Another body of
work has considered the setting in which the goal is not
to learn the entire unknown quantum state ρ but to learn
only certain properties of ρ. In this context, people have
considered tasks such as (i) PAC learning: the learn-
ing algorithm here is given access to (Ei,Tr(ρEi)) where
{Ei, I−Ei} is a uniformly random Positive Operator Val-
ued Measure (POVM) element, (ii) Shadow tomography,
where the goal is, given copies of an unknown quantum
state ρ, can we learn the expectation values of ρ with
respect to a certain set of fixed, a priori known observ-
ables {E1, . . . , Em}, (iii) Other models such as classical
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shadows, online learning, learning with differential pri-
vacy that have modified the models (i, ii). In all these
models of learning, it is well-established that [350–352]
the complexity of learning is O(n), which is exponen-
tially better than tomography. For a detailed survey on
the complexity of learning quantum data, we refer the
interested reader to [353].

More practical applications of quantum data learn-
ing to HEP is to use it for extracting physical informa-
tion from quantum states in quantum simulation. This
was first proposed in the context of condensed-matter
physics [354] and further explored in [355–361]. The typ-
ical example is a recognition of quantum phases, where
the QML model learns the pair of quantum states and
their phases to predict phase of unknown states. In the
context of high-energy physics, we often encounter phase
transitions that cannot be investigated by local order pa-
rameters, such as confinement/deconfinement transition
in QCD. It would be interesting to apply quantum data
learning method to extract physical information in such
situations.

In the longer-term, one may perform quantum ex-
periment, not only digital quantum simulation but also
analogue quantum simulation or others, then measure
the final states via quantum sensor, and transduce the
states coherently to a quantum computer which performs
QML to extract physical information (see e.g., [362]).
This hybrid system could be extended to the concept
of quantum-enhanced HEP experiment. A fascinating
direction to exploit quantum data is to physically place
quantum sensing devices in experiments and directly feed
quantum states registered on the sensors into quantum
computers. This certainly involves many challenges, e.g.,
detect particles or wave-like matters in quantum sensor,
coherently transfer the generated state to other quan-
tum systems, perform quantum operations to measure
physical properties within coherence time. Such experi-
ments will, however, provide an exciting opportunity to
directly explore quantum phenomena observed in HEP
experiments and extract dynamical properties of entan-
gled quantum states.

A ‘conditio sine qua non’ for the success of this pro-
gram in the era of noisy, near-term quantum devices is
the co-design of error mitigation schemes that can effi-
ciently compensate for the different noise sources (e.g.,
gate errors, qubit decoherence and cross-talk) and guar-
antee results of sufficient quality to extract the physics
of interest. To this end, several error mitigation schemes
have been proposed in the past few years (see Sec. II) in-
cluding zero-noise extrapolation [67], probabilistic error
cancellation [75], and the probabilistic error amplification
approach recently applied to the dynamics of the trans-
verse field Ising model with more than 100 sites [363].
All these methods will require an accurate description of
all noise sources of current devices, which in the mean-
time became a very active and successful area of re-
search [67, 68, 72, 74, 75, 364]. Finally, the precision
of most quantum algorithms will depend on the quality

of the measurement process of the observables of inter-
est. Accurate results can require a number of projective
measurements that can easily exceed what is currently
affordable with the present gate times (from about hun-
dred ns with superconducting qubits, up to a few hun-
dred ms with ion-based technologies), which determine
the clock-speed of quantum computing hardware calcu-
lations. Also in this case, there is the urge to design
novel approaches capable of reducing the measurement
overhead. Informationally complete POVM [365] as well
as classical shadows [366] offer viable solutions to this
problem, opening new avenues for the use of quantum
computing in large scale simulations.

ACKNOWLEDGMENTS

A.D.M., M.G, and S.V. are supported by CERN
through the CERN Quantum Technology Initiative
(CERN QTI). K.J.’s work is funded by the European
Union’s Horizon Europe Framework Programme (HORI-
ZON) under the ERA Chair scheme with grant agree-
ment no. 101087126. K.J., A.C., C.T., and S.K. are sup-
ported with funds from the Ministry of Science, Research
and Culture of the State of Brandenburg within the Cen-
tre for Quantum Technologies and Applications (CQTA).

A.R. is funded by the European Union. Views and
opinions expressed are however those of the author(s)
only and do not necessarily reflect those of the Euro-
pean Union or the European Commission. Neither the
European Union nor the granting authority can be held
responsible for them. This project has received fund-
ing from the European Union’s Horizon Europe research
and innovation programme under grant agreement No.
101080086 NeQST.

E.R.O. is supported by the grant PID2021-126273NB-
I00 and by the EU via QuantERA project T-
NiSQ grant PCI2022-132984, QuantERA project
QuantHEP, project Euryqa and PASQUANS2
funded by the European Union “NextGenera-
tionEU”/PRTR, by ”ERDF A way of making Europe”,
by MCIN/AEI/10.13039/501100011033, and the Italian
National center for HPC, Big Data and Quantum
Computing, and the Basque Government through Grant
No. IT1470-22.
J.T.B. has received support from the European Union’s

Horizon Europe research and innovation programme



27

through the ERC StG FINE-TEA-SQUAD (Grant No.
101040729). J.T.B., V.D. and V.C. are supported by
the Dutch National Growth Fund (NGF), as part of the
Quantum Delta NL programme. V.D. and V.C also
are supported by the Netherlands Organisation for Sci-
entific Research (NWO/OCW), as part of the Quan-
tum Software Consortium programme (project number
024.003.037 / 3368). ZH acknowledges support from the
Sandoz Family Foundation-Monique de Meuron.

L. N. is supported by the IBM-UTokyo lab under the
Japan-IBM Quantum Partnership.

J.S. would like to thank the support of Fundação
para a Ciência e a Tecnologia (FCT) under contracts
CERN/FIS-COM/0036/2019 and UIDB/04540/2020
and project QuantHEP supported by the EU H2020
QuantERA ERA-NET Cofund in Quantum Technologies
and by FCT (contract QuantERA/0001/2019).

E.F. acknowledges support by the Deutsche
Forschungsgemeinschaft (DFG, German Research
Foundation) under Germany’s Excellence Strategy ––
EXC-2123 “QuantumFrontiers” — 390837967.

The IBM team acknowledges Jay Gambetta for his pre-
cious and constant support of the HEP working group.
IBM, the IBM logo, and ibm.com are trademarks of Inter-
national Business Machines Corp., registered in many ju-
risdictions worldwide. Other product and service names
might be trademarks of IBM or other companies. The
current list of IBM trademarks is available at https:
//www.ibm.com/legal/copytrade.

Appendix A: Resource Requirements for Quantum
Simulation of lattice QED

In this appendix we assess the resource requirements
for the implementation of the quantum link model formu-
lation of U(1) lattice gauge theories with dynamical Wil-
son fermions in arbitrary dimension d. In reference [25],
we assessed the number of qubits required to capture all
degrees of freedom. Then we also reported the number of
Pauli strings that is required to implement the different
terms in the QED Hamiltonian and finally, in the same
publication we touched upon how this translates into the
number of required quantum gates. We express all scal-
ings in terms of a combination of the following model
parameters:

• ns number of lattice sites.

• ne number of lattice edges. Scales linearly
with ns in regular lattices.

• np number of lattice plaquettes. Scales
linearly with ns in regular lattices.

• nspinor number of spinor components.

• d number of spatial lattice dimensions.

• dS dimension of the spin S system in the
quantum link model.

• nnonzero(A) number of nonzero elements of the ma-
trix A.

• npauli(Ô) total number of Pauli strings in the

encoding of the operator Ô.

• nreal(Ô) number of Pauli strings with real coef-

ficients in the encoding of Ô.

• nimag(Ô) number of Pauli strings with imaginary

coefficients in the encoding of Ô.

• nmix(Ô) number of Pauli strings with neither
purely real nor purely imaginary coefficients in the
expansion of Ô.

Table A provides a summary of this analysis. For the
exact formulas for the number of Pauli terms, we refer to
the respective sections above.

Term Number of Pauli strings

log. enc. log. enc. (perfect) lin. enc.

Hmass O(nsnspinor) O(nsnspinor) O(nsnspinor)
Hhopp O

(
nsdn

2
spinord

2
S

)
O
(
nsdn

2
spinordS

)
O
(
nsdn

2
spinordS

)
Hwilson O

(
nsdn

2
spinord

2
S

)
O
(
nsdn

2
spinordS

)
O
(
nsdn

2
spinordS

)
Helec O(nsddS) O(nsddS) O

(
nsdd

2
S

)
Hplaq O

(
nsdd

8
S

)
O
(
nsdd

4
S

)
O
(
nsdd

4
S

)
TABLE II. The scaling relations for the number of Pauli
terms for the terms in the lattice QED Hamiltonian are
shown for different encodings of the truncated gauge oper-
ators. These relations do not depend on whether the Jordan-
Wigner, Bravyi-Kitaev or Parity mapping is used for the
fermions.

The analysis shows that the dominant term with re-
spect to the number of required Pauli strings is the pla-
quette term Hplaq, due to its strong scaling of with dS .
For this reason, even for small values of dS the plaque-
tte term contributes by far the highest number of Pauli
strings of all the terms in the Hamiltonian.

The best overall scaling, and thus the lowest number
of required Pauli terms, is achieved by using a logarith-
mic encoding for a quantum link model with a perfectly
representable spin S system. The logarithmic encoding
is also more favorable in terms of the number of required
qubits. The downside of perfectly representable S is that
the eigenvalue Sz = 0 is not contained in the spectrum
as dS is a power of two, resulting in a degenerate ground
state.

Appendix B: Algorithms and Their Limitations

In this section we provide an overview over various
classical and quantum algorithms relevant for the field
of high-energy physics and highlight their capabilities as
well as their limitations.

https://www.ibm.com/legal/copytrade
https://www.ibm.com/legal/copytrade
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1. VQE and VQD

The variational quantum eigensolver is a hybrid
quantum-classical approach to obtain an approximation
for the ground state of a (quantum) system [116]. The
algorithm uses the quantum device to prepare an ansatz
state in form of a parametric quantum circuit. Based on
the measurement outcome of the expectation value of the
Hamiltonian, a classical minimization algorithm is used
to obtain a new set of parameters. Running the feedback
loop between the classical computer and the quantum
device until convergence, one obtains an approximation
for the ground state and its energy, provided the chosen
ansatz is expressive enough and the optimization did not
converge to a local minimum. Main limitations of the
VQE are barren plateaus (see Sec. IVB2).

VQD is an extension of the VQE allowing for com-
puting low-lying excitations by running a VQE looking
for a low energy state that is orthogonal to all previous
states [117]. SSVQE is another approach used to com-
pute excited states. This algorithm searches a low en-
ergy subspace by supplying orthogonal input states to the
variational ansatz [118]. All the variational algorithms
can be applied to Hamiltonians in both theoretical mod-
els and experimental analysis.

2. Tensor Networks

Tensor Networks are a family of entanglement-based
ansätze providing an efficient parametrization of the
physically relevant moderately entangled states [10, 12].
TN algorithms allow for computing ground states, low-
lying excitations, thermal states and to a certain ex-
tent real-time dynamics. While TN are extremely suc-
cessful in situations with moderate entanglement, they
cease to work for highly entangled scenarios such as out-
of-equilibrium dynamics. Moreover, in higher dimen-
sions the numerical algorithms are computationally chal-
lenging but have a polynomial scaling in tensor size,
thus allowed for first proof-of-principle demonstrations
for LGTs [21, 83].

3. QAOA

The quantum approximate optimization algorithm is
a hybrid quantum-classical approach, originally designed
to tackle combinatorial optimization problems [367]. The
problem is encoded in an Ising type Hamiltonian whose
ground state is the optimal solution to the combinatorial
optimization problem. QAOA can be seen as a special
type of VQE, where the intial state is given by

⊗
|+⟩ and

the parametric ansatz circuit in its plain vanilla form con-
sists of a series of two alternating types of layers, each
one containing a single real parameter. The first one is
the exponential of the problem Hamiltonian, exp(−iγH),
followed by a mixing layer corresponding to RX(βi) gates

applied to each qubit. In the limit of infinitely many lay-
ers, QAOA can be interpreted as an adiabatic evolution
of an eigenstate of the X operator to the one of the prob-
lem Hamiltonian. From a theoretical point of view the
performance of QAOA is not entirely clear, it seems to
depend on various factors and does not necessarily out-
perform classical algorithms [368–370]. Furthermore, the
resulting quantum circuits can be deep making them hard
to implement on noisy hardware [318, 371]. However,
some of these issues may be alleviated by algorithmic
advances such as warm-starts [372] and counteradiabatic
driving [373].

4. QKMEANS

The classical k−means is an efficient algorithm to clas-
sify data into k clusters based on an unlabeled set of
training vectors. It belongs to the family of unsupervised
machine learning algorithms. The number k of clusters
must be known a priori which somewhat limits the range
of its application in HEP. The algorithm is iterative and
assigns at each step a training vector to the nearest cen-
troid. The centroid location is then updated according to
the average over the cluster of vectors associated at the
current step to the centroid. The most time/resources
consuming part of the algorithm is the calculation of the
distance. In the classical version, using Lloyd’s version
of the algorithm, the time complexity is O(NM) where
N is the number of features and M is the number of
training examples [374–376]. The quantum version of
the k−means algorithm provides an exponential speed-
up for very large dimensions of a training vector. This is
achieved through the introduction of two quantum sub-
routines, SwapTest and DistCalc, for the distance cal-
culation [377] and quantum subroutine GroverOptim to
assign a vector to the closest centroid cluster [378].

5. Quantum Kernels

Quantum kernels are a supervised quantum machine
learning algorithm for classification and regression. The
inputs can either be quantum (i.e., quantum states with
an associated classical label) or fully classical (i.e. input-
output data pairs). For the latter, the input classical
data is first embedded into quantum states. For a quan-
tum speed-up over classical algorithms, it is important to
use an embedding (also called a quantum feature map)
that is capable of recognizing classically intractable fea-
tures [296, 379, 380]. For a given input pair of inputs one
then evaluates a similarity measure between two encoded
quantum states on a quantum computer. Formally, this
is function corresponds to an inner product of data states,
and is known as a quantum kernel [200, 379, 381]. The fi-
delity quantum kernel [200, 381] and projected quantum
kernel [379] are two common choices in kernels.
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6. Quantum Generative Modelling

Quantum systems, as inherently probabilistic systems,
are naturally tailored to generative modelling tasks [382].
The aim of generative modelling is to use training sam-
ples from a given target distribution to learn a model
distribution which can then be used to generate new sam-
ples. As well as providing an efficient means of generat-
ing samples, it has been shown that quantum generative
models can encode probability distributions that cannot
be modelled efficiently classically [383–385]. A number of
different architectures and training strategies are being
explored for quantum generative modelling. The Quan-
tum circuit Born machine (QCBM) [386] encodes a prob-
ability distribution in an n-qubit pure state. The Quan-
tum Boltzmann Machine (QBM) [387] is based on the
Boltzmann distribution of a quantum Hamiltonian. A
Quantum Generative Adversarial Network (QGAN) [388]
uses the interplay of a generative quantum neural net-
work and a classical or quantum discriminative model to
a target distribution. In all cases the quantum generative
model is generally trained by optimizing a cost function
which estimates the distance between the model distribu-
tion and the training distribution. Commonly used costs
include the KL divergence [389], the Jensen-Shannon di-
vergence [390], the (quantum) Rényi divergence [391, 392]
and the Maximum Mean Discrepancy [393].

7. QRL

Reinforcement Learning (RL) is an interactive mode of
machine learning well suited for sequential decision and
control tasks, and its objective is identifying the optimal
policy (specification of what a learner does in a given
situation) for a task environment. Current state-of-art
methods include policy gradient methods, where the op-
timal policy is parametrized, and the performance is op-
timized in the policy space using interactions with the
task environment; deep Q-learning methods, where the
optimal value functions, which evaluate the “value” of a
given state-action pair under a given policy, are approx-
imated. Other approaches combine features of policy-
and value-function-based methods. In Quantum Rein-
forcement Learning (QRL); i.e., in quantum approaches
to RL, the policies (in policy gradients), or value func-
tions (in value-function-based methods) are expressed
using parametrized quantum circuits, instead of, e.g.,
neural networks which are conventionally used. The
first quantum policy methods which achieved success-
ful performances in OpenAI gym benchmarking environ-
ments were reported in [394], and the same paper proved
the existence of task environments which can only be
learned with quantum learners. In [395] the quantum
approach was extended to value-based approaches (deep
Q-learning), and analogous proofs of learning separations
were given. The work [396] studies using quantum meth-
ods to speed up neural network-based deep energy mod-

els. Follow-up works include the analysis of the per-
formance of simple unentangled quantum learners [397],
learning in partially observable environments [398], ap-
plications in combinatorial optimization [399] and others.
QRL is also adopted in [400] where free energy-based
reinforcement learning (FERL) is extended to multi-
dimensional continuous state-action space environments
to open the doors for a broader range of real-world ap-
plications. An hybrid actor-critic scheme for continuous
state-action spaces is developed based on the Deep Deter-
ministic Policy Gradient algorithm combining a classical
actor network with a QBM-based critic. The environ-
ments used throughout represent existing particle accel-
erator beam line of the Advanced Plasma Wakefield Ex-
periment (AWAKE) at CERN. QRL with parameterized
circuits suffers from barren plateaus as well (as it con-
tains conventional supervised learning as a special case),
although it is not known whether the phenomenon is ex-
acerbated. In a recent work [401], the effect of noise was
studied as well, and the results suggest the models could
be somewhat resistant to noise, but more studies are re-
quired for conclusive findings.

8. Topological Data Analysis

Topological Data Analysis (TDA) is an increasingly
studied technique for extracting robust topological fea-
tures from complex datasets and has in recent times also
been employed in high-energy physics problems [402].
The principal computational task in TDA is the extrac-
tion of so-called (persistent) Betti numbers, which can
be used to distinguish the underlying topological spaces
of data. In the work [403], a quantum algorithm for
this problem was proposed, and it was suggested it may
offer exponential speed-ups over conventional methods.
In [404, 405] it was proven that certain generalizations
of the TDA problem are DQC1-hard (and thus likely
offer exponential speed-ups, and [406] showcases how
persistent features can be extracted as well. The pa-
pers [407–409] provide streamlined versions of the orig-
inal algorithm and achieve up-to-exponential savings in
the qubit numbers, and [408] has showcased a concrete
family of datasets where concrete superpolynomial speed-
ups over the best conventional methods are achieved.
In [405, 410], based on [411], a deep connection between
TDA and supersymmetric theories has been established
which may lead to new applications of (quantum) TDA in
not only analysing experimental data, but also exploring
theoretical spaces beyond the standard model. However
it is important to note that it still remains to be deter-
mined if quantum TDA offers guaranteed speed-ups, or
if it can be “de-quantized” using a new class of classical
methods. Further, it is still an open question whether the
regimes where quantum dramatic speed-ups kick in (i.e.
when the desired homology, or Betti number, is high)
have a wide application.
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[2] S. Dürr, Z. Fodor, J. Frison, C. Hoelbling, R. Hoffmann,
S. D. Katz, S. Krieg, T. Kurth, L. Lellouch, T. Lippert,
K. K. Szabo, and G. Vulvert, Ab initio determination
of light hadron masses, Science 322, 1224 (2008).

[3] C. Alexandrou, Recent progress on the study of nucleon
structure from lattice QCD and future perspectives, Sci-
Post Phys. Proc. , 015 (2020).

[4] K. Fukushima and T. Hatsuda, The phase diagram of
dense qcd, Rep. Prog. Phys. 74, 014001 (2011).

[5] M. Troyer and U.-J. Wiese, Computational complex-
ity and fundamental limitations to fermionic quantum
monte carlo simulations, Phys. Rev. Lett. 94, 170201
(2005).

[6] J. Kogut and L. Susskind, Hamiltonian formulation of
wilson’s lattice gauge theories, Phys. Rev. D 11, 395
(1975).

[7] J. B. Kogut, An introduction to lattice gauge theory
and spin systems, Rev. Mod. Phys. 51, 659 (1979).

[8] P. Silvi, E. Rico, T. Calarco, and S. Montangero, Lattice
gauge tensor networks, New J. Phys. 16, 103015 (2014).

[9] M. Dalmonte and S. Montangero, Lattice gauge theory
simulations in the quantum information era, Contemp.
Phys. 57, 388 (2016).
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[11] M. C. Bañuls, R. Blatt, J. Catani, A. Celi, J. I. Cirac,
M. Dalmonte, L. Fallani, K. Jansen, M. Lewenstein,
S. Montangero, C. A. Muschik, B. Reznik, E. Rico,
L. Tagliacozzo, K. Van Acoleyen, F. Verstraete, U.-J.
Wiese, M. Wingate, J. Zakrzewski, and P. Zoller, Sim-
ulating lattice gauge theories within quantum technolo-
gies, The European Physical Journal D 74, 165 (2020).
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[200] V. Havĺıček, A. D. Córcoles, K. Temme, A. W. Harrow,
A. Kandala, J. M. Chow, and J. M. Gambetta, Super-
vised learning with quantum-enhanced feature spaces,
Nature 567, 209 (2019).

[201] M. Schuld and N. Killoran, Quantum machine learning
in feature hilbert spaces, Phys. Rev. Lett. 122, 040504
(2019).

[202] S. Thanasilp, S. Wang, M. Cerezo, and Z. Holmes,
Exponential concentration and untrainability in quan-
tum kernel methods, arXiv preprint arXiv:2208.11060
(2022).

[203] M. Incudini, M. Grossi, A. Ceschini, A. Mandarino,
M. Panella, S. Vallecorsa, and D. Windridge, Resource
saving via ensemble techniques for quantum neural net-
works (2023), arXiv:2303.11283 [quant-ph].

https://doi.org//10.48550/arXiv.2203.08805
https://doi.org//10.48550/arXiv.2203.08805
https://doi.org/10.1088/1742-6596/1085/2/022008
https://doi.org/10.1088/1742-6596/1085/2/022008
https://doi.org/10.48550/arXiv.2210.11489
https://doi.org/10.1103/PhysRevD.101.075021
https://doi.org/10.1103/PhysRevD.101.075021
https://doi.org/10.1103/PhysRevD.107.016002
https://doi.org/10.1103/PhysRevD.107.016002
https://doi.org/10.48550/ARXIV.2301.10780
https://doi.org/10.1088/1742-6596/2438/1/012115
https://doi.org/10.1088/1742-6596/2438/1/012115
https://doi.org/10.1051/epjconf/202125103070
https://doi.org/10.1051/epjconf/202125103070
https://doi.org/10.48550/arXiv.2001.03622
https://doi.org/10.22323/1.070.0086
https://arxiv.org/abs/0910.1729
https://doi.org/10.48550/ARXIV.1011.6224
https://doi.org/10.48550/ARXIV.1011.6224
https://doi.org/10.48550/arXiv.2112.07793
https://doi.org/10.1103/PhysRevD.99.014038
https://doi.org/10.1103/PhysRevD.99.014038
https://doi.org/10.1504/IJKESDP.2011.039875
https://doi.org/10.1504/IJKESDP.2011.039875
https://doi.org/10.48550/ARXIV.1708.02002
https://doi.org/https://doi.org/10.1016/j.cpc.2021.108100
https://doi.org/https://doi.org/10.1016/j.cpc.2021.108100
https://doi.org/10.1140/epjc/s10052-018-6136-y
https://doi.org/10.1140/epjc/s10052-018-6136-y
https://doi.org/10.1103/PhysRevLett.120.211802
https://doi.org/10.1140/epjc/s10052-020-08713-1
https://doi.org/10.1140/epjc/s10052-020-08713-1
https://doi.org/10.1007/jhep10(2017)174
https://doi.org/10.1007/jhep10(2017)174
https://doi.org/10.1103/PhysRevD.105.095004
https://doi.org/10.48550/arXiv.2301.10780
https://arxiv.org/abs/2304.14439
https://arxiv.org/abs/2304.14439
https://doi.org/10.1038/s42254-021-00348-9
https://doi.org/10.1038/s41586-019-0980-2
https://doi.org/10.1103/PhysRevLett.122.040504
https://doi.org/10.1103/PhysRevLett.122.040504
https://arxiv.org/abs/2303.11283


36

[204] L. Funcke, T. Hartung, B. Heinemann, K. Jansen,
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[209] T. Schwägerl, C. Issever, K. Jansen, T. J. Khoo,
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