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Although entanglement is a basic resource for reaching quantum advantange in many computation
and information protocols, we lack a universal recipe for detecting it, with analytical results obtained
for low dimensional systems and few special cases of higher dimensional systems. In this work, we
use a machine learning algorithm, the support vector machine with polynomial kernel, to classify
separable and entangled states. We apply it to two-qubit and three-qubit systems, and we show
that, after training, the support vector machine is able to recognize if a random state is entangled
with an accuracy up to 92% for the two-qubit system and up to 98% for the three-qubit system. We
also describe why and in what regime the support vector machine algorithm is able to implement
the evaluation of an entanglement witness operator applied to many copies of the state, and we
describe how we can translate this procedure into a quantum circuit.

I. INTRODUCTION

Quantum entanglement [1] is one of the main features
that distinguish between classical and quantum states
and represents one of the basic ingredients for reaching
quantum advantage in computation and information pro-
tocols [2–4]. An N -particle state is entangled if its den-
sity operator can not be written as tensor product or sum
of tensor products of N single-particle density operators
or, in other words, if the state of the system cannot be en-
tirely described considering its N single components only.
Despite the simplicity of such a definition, the problem
of identifying, classifying and quantifying entanglement is
mathematically extremely hard. Many analytical and nu-
merical results have been obtained in the study of bipar-
tite entanglement, including the well known positive par-
tial transpose (PPT) criterium, which establishes that,
for two-qubit and qubit-qutrit states, the positivity of
the partial transposition of the density operator provides
a necessary [5] and sufficient [6] condition for entangle-
ment. In spaces of higher dimension, however, the PPT
criterion offers only a necessary condition for separability
[5], reflecting the fact that entanglement of an N -particle
system (with N ≥ 3) is much richer in comparison to the
bipartite case. This is because quantum entanglement
is a “monogamous” property that can be shared among
the different parts in many non-equivalent ways and not
freely, since the degree of entanglement between any two
of its parts influences the degree of entanglement that
can be shared with a third part [7, 8]. In the last two
decades, there has been a great effort to recognize if a
state with N ≥ 3 is entangled and many analytic results
have been found, see the review papers [9, 10]. How-
ever, even in the simplest case of three qubits, a general
solution is still missing.

In this paper we tackle the still open question of finding
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if a given state is entangled or separable as a classifica-
tion problem.
Many classification problems can be solved efficiently by
machine learning (ML) algorithms [11, 12], whose goal is
to find a way to infer, from the available labeled data,
the class of an unlabeled data point. Neural network ML
algorithms for classification of entangled states have al-
ready been adopted in previous works, such as in Ref. [13]
for the classification of two-qubit states labeled by means
of Bell’s inequalities, or in Ref. [14], where a classifier is
trained to recognize separable states of multi-qubit sys-
tems.
Another well-known ML algorithm is the Support Vector
Machine (SVM) [15], that has been proved to be very
solid in solving classification problems in image recog-
nition [16], medicine [17, 18] and biophysics [19] among
others. A collection of applications of the SVM algo-
rithm can be found in the review paper [20]. The SVM
approach has been recently investigated for classifica-
tion of two-qubit states [21] and four-qubit states [22].
In particular, in the former paper, the authors use a
SVM with exponential kernel, supported by a prelim-
inary Convex Hull Approximation (CHA) analysis, to
construct a separability-entanglement classifier via a su-
pervised learning approach.

In this work, we put forward a new approach, exploit-
ing the so-called kernel trick [12] with polynomial ker-
nels, in which we train a SVM to classify entangled and
separable states with a high predictive power, speciliz-
ing the analysis first to the case of the two-qubit sys-
tem, as a benchmark, and then generalizing it to the
classification of different classes of entangled states of a
three-qubit system. The performance of the algorithm is
evaluated through the following metrics: the accuracy a,
corresponding to the percentage of true positives, i.e. the
(either separable or entangled) states that are correctly
classified, the precision p, that measures the percentage
of predicted entangled states that are really entangled,
and the recall r, that measures the percentage of entan-
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gled states that are correctly classified. The hyperparam-
eters of the algorithm are chosen to get p = 1 and the
maximum possible value of r on the validation set.
In this way we are effectively implementing an entan-
glement witness operator, which does not misclassifies
separable states as entangled while also minimizing the
number of entangled states that are misclassified as sep-
arable. Such witness operator is explicitly constructed
for a linear kernel, obtaining a standard witness func-
tional over the space of density matrices of the system,
as well as in the case of a non-linear polynomial kernel
of degree n. In the latter case, which corresponds to the
construction of a witness functional over n-copies of the
system, the performance of the algorithm increases. Fi-
nally, we present a digital quantum circuit which is able
to implement the construction and the evaluation of such
entanglement witnesses.

The content of the paper is as follows. In Section II
we review the entanglement classification for two-qubit
and three-qubit systems, with emphasis on the analytical
results that we use to generate the dataset of pure and
mixed states [9, 23–27]. In Section III we describe the
SVM algorithm and the kernel trick. In Section IV we
relate the separating hypersurface obtained via the SVM
to the evaluation of an entanglement witness operator,
providing for that also an operational procedure that can
be implemented on a digital quantum computer.

In Section V we train the SVM with two-qubit states
for which we have an exact classification, i.e. the PPT
criterion, and eventually test our method on a large sam-
ple. Section VI is devoted to the extension of our analysis
to three-qubit systems. Finally, in Section VII we draw
our conclusion and give outlooks for possible future re-
search directions.

II. ENTANGLEMENT CLASSIFICATION

In this section we give a brief overview of the entan-
glement in two-qubit and three-qubit systems, with em-
phasis on the different analytical results found in the lit-
erature to classify entangled and separable states.

Let us first consider a pure quantum state |ψ〉 defined
in the Hilbert space H⊗N of N identical particles and
described by the density operator ρ̂ = |ψ〉〈ψ|.

The state ρ̂ can be written as a product state ofM ≤ N
density operators [28] as

ρ̂ = ⊗Mj=1ρ̂j (1)

If M = N , the state is called fully separable, and each
ρ̂j acts on the one-particle space H. If M < N , at least
one of the density operators ρ̂j describes more than one
particle. If M = 1, the state ρ̂ is called Genuinely Mul-
tipartite Entangled (GME).

In the case of a two-qubit state, with N = 2 and H =
C2, the system can either be separable, with M = 2, or
entangled, with M = 1. In case the system is composed
by three qubits, labeled as A,B and C, we have N = 3

and H = C2. The state is fully separable (SEP) when
M = 3, and therefore Eq.(1) reads as ρ̂ = ρ̂A ⊗ ρ̂B ⊗ ρ̂C .
When M = 2 the state is called biseparable, and the
density operator can be written as ρ̂A ⊗ ρ̂BC (A-BC),
ρ̂B ⊗ ρ̂AC (B-AC) or ρ̂C ⊗ ρ̂AB (C-AB). When M = 1
the state is GME. GME states play an important role to
devise robust distribution protocols [29].
Mixed states are a statistical mixture of pure states [1],
and are described by a density operator of the form

ρ̂ =
∑
i

piρ̂i, (2)

where
∑
i pi = 1 and ρ̂i are pure states. The mixed

state ρ̂ is fully separable when each pure state ρ̂i is fully
separable.
For a two-qubit system (as well as for a qubit-qutrit sys-
tem), the PPT criterion [5, 6] offers a necessary and suffi-
cient condition for labeling a quantum state as entangled:
a two-qubit state is separable if and only if the partial
transposition of the density matrix returns a density ma-
trix. In all other cases, the PPT criterion offers only a
necessary condition for separability [5].

FIG. 1. The set of three-qubit states, called A, B and C,
in terms of their level of entanglement. GME is the set of
geuinely multipartite entangled states, SEP is the set of fully
separable states, and A-BC, B-AC, C-AB represent the three
possible factorization of the density operator in the bisepara-
ble case. Lines between sets of biseparable states represent the
convex hull of biseparable states. The states are represented
by circles. The segments joining them are their convex combi-
nations. In the figure are represented convex combination of
a state in B-AC with states in GME (black continuous line),
in C-AB (green dashed line), and in A-BC (red dotted line).
Depending on the weights given to the convex combination,
the resulting state can lie in a different subset.

When considering the statistical mixture of states of
three qubits, it is not straightforward to tell if the state
is separable, biseparable or GME. Fig. 1 shows the gen-
eral classification of three-qubits states. The convex set
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of fully separable states is represented by the innermost
circle, which is sorrounded by the three kinds of bisepara-
ble states (A-BC,B-AC,C-AB) and finally by the GME
states (largest circle). The segment joining two points
represents the convex combination of two states. A sta-
tistical mixture of states can lie in any of the aforemen-
tioned classes. When the state is a statistical mixture
of biseparable states, with respect to different partitions,
the result can either be fully separable, or biseparable
with respect to one of the partitions (green dashed seg-
ment in Fig.1), or biseparable with respect to none of
the partitions (red dotted segment in Fig.1), thus form-
ing the convex-hull of the biseparable states. It is known
that all GME states can be obtained by applying SLOCC
(stochastic local operations and classical communication)
operations [23] either on the GHZ state

|GHZ〉 =
1√
2

(|000〉+ |111〉), (3)

or on the W state

|W〉 =
1√
3

(|100〉+ |010〉+ |001〉). (4)

To correctly label as entangled or separable the three-
qubit states used to construct the dataset for the ML
classifier, we will resort to the analytical calculation of
several entanglement measures [30]. In the remaining of
this section we are going to introduce these analytical
results, and we refer to Appendix A for the description
of the states. In general, an entanglement measure µ is
a real function defined on the set of the states that does
not increase under the application of a SLOCC trans-
formation [23], for which two states belong to the same
class if you can transform one into the other with an in-
vertible local operation, and the application of SLOCC
brings a state into a class with lower or equal value of
any entanglement measure.
Pure states can be uniquely [23] labeled with the entan-
glement entropy S, the GME-concurrence CGME and the
three-tangle τ . The entanglement entropy Sm [31] cor-
responds to the Von-Neumann entropy calculated on the
reduced system ρ̂m = TrABC−m[ρ̂], with m =A,B,C:

Sm = −Tr[ρ̂m ln ρ̂m]. (5)

Genuinely Multipartite Entanglement concurrence [32] is
defined as

CGME = 2 min
i∈P

√
1− Tr[ρ̂2

i ], (6)

where P = {AB,BC,AC} is the set of the possible sub-
systems. Finally, the three-tangle τ [7] accounts for the
genuinely multipartite entanglement of the GHZ class.
Given the reduced density operator ρ̂AB of the subsystem
of the qubits A and B, we define the matrix ρ̃AB = (σy⊗
σy)ρ̂AB(σy ⊗ σy), and we denote assam λ1

AB , λ
2
AB the

square root of the first and second eigenvalues of ρ̃AB ρ̂AB .
Then, the three-tangle is

τ(ρ̂) = 2(λ1
ABλ

2
AB + λ1

ACλ
2
AC), (7)

Class Entanglement measure
label

SEP-vs-all GME-vs-all

SEP Sm = 0 for m = A,B,C -1 -1

A-BC SA = 0 and SB , SC > 0 +1 -1

B-AC SB = 0 and SA, SC > 0 +1 -1

C-AB SC = 0 and SA, SB > 0 +1 -1

GHZ SA, SB , SC > 0 and τ > 0 +1 +1

X-state C̃GME > 0 +1 +1

GHZ-sym C̃GME > 0 and τ̃ > 0 +1 +1

GHZ+W τ̃ > 0 +1 +1

TABLE I. The classification of three-qubit states into entan-
glement classes. SEP are pure and mixed separable states.
A-BC, B-AC, C-AB are the biseparable states. GME states
divide into pure GHZ states, X-state, GHZ symmetric and
statistical mixture of GHZ and W states, each labeled ac-
cordingly to the corresponding entanglement measures. The
mixed states are classified using the CRE of the entanglement
measures, denoted as C̃GME and τ̃ . Fully separable states,
pure and mixed, are labeled as −1 for both the SEP-vs-all
and GME-vs-all classifiers, biseparable states are labeled as
+1 in the SEP-vs-all classifier and −1 in the GME-vs-all clas-
sifier. GME states are always labeled as +1.

with λiAC defined in a similar manner as λiAB , for i = 1, 2.
In the case of mixed states, the entanglement measures
defined above fail to classify entangled states. One needs
to calculate the Convex-Roof Extension (CRE) [33] of an
entanglement measure µ defined as

µ̃(ρ̂) = inf
P

∑
i

piµ(ρ̂i), (8)

where P stands for all the possible decompositions
{pi, ρ̂i} such that ρ̂ =

∑
i piρ̂i, with

∑
i pi = 1 and ρ̂i is

a pure state. This is in general difficult to calculate, and
numerical solutions are usually very costly. Therefore, we
use particular types of mixed states for which the ana-
lytic solutions for the CRE of the three-tangle [26, 27, 34],
and the CRE of GME-concurrence [9, 24, 25] are avail-
able. These are the GHZ-symmetric states, the X-states,
and the statistical mixture of GHZ and W states which
are defined in Appendix A, which will be used in the fol-
lowing to construct the three-qubit dataset of the SVM
algorithm. Table I summarizes how the labels are as-
signed to these different type of states.

III. SUPPORT VECTOR MACHINE

In this section we give a general introduction of the
SVM.

Suppose that we have a dataset divided into two
classes, composed of m pairs {(xi, yi)}. The i-th obser-
vation xi ∈ Rd describes the characteristics of the point
while yi = ±1 labels its class. The SVM [12, 15] is a ML
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classification algorithm based on the assumption that a
hyperplane, or more generally a d−1 surface, which sep-
arates the two classes in the feature space exists. The
hyperplane is defined through a linear decision function
f(x), with parameters w ∈ Rd, called weights, and b ∈ R,
called bias, given as

f(x) = wTx + b, (9)

s.t.

{
f(xi) > 0 if yi = +1,

f(xi) < 0 if yi = −1.

The SVM algorithm aims to find the hyperplane (w, b)
that maximizes the margin 1/‖w‖ (‖·‖ being the eu-
clidean norm) between itself and the closest points of
the two classes. Fig. 2 shows a two-dimensional dataset
made of two classes, the circles and the trangles, that are
separated by a hyperplane.

FIG. 2. Representation of the separating line between two
data classes, the circles and the triangles, in a two-dimensional
plane. The two classes are linearly separable by the straight
line y = wx + b. The margin, i.e. the distance between the
hyperplane and the closest data point of each class is 1/|w|.
The lines y − wx − b = ±1 cross the support vectors, here
drawn with a filled shape. The slack variables ζ1 and ζ2 pe-
nalize the possible misclassification of the two gray triangle
points.

Maximizing the margin corresponds to finding

min
w

1

2
‖w‖2, (10)

s.t. yi(w
Txi + b) ≥ 1, for i = 1, . . . ,m.

We can assume that the hyperplane defined by the deci-
sion function f is not able to perfectly separate the two
classes. Thus, we can introduce m slack variables ζi, one
for each observation xi, to account for the constraints
of f in Eq. (9) that are not satisifed. Hence, Eq.(10) is

refined into

minw,ζ
1

2
||w||2 +

m∑
i=1

λyiζi, (11a)

s.t. yi(w
Txi + b) ≥ 1− ζi, (11b)

ζi ≥ 0. (11c)

The constants λyi ≥ 0 are called regularization parame-
ters. Geometrically, the action of the slack variables ζi
can be seen as a non-smooth deviation of the hyperplane,
as shown in Fig. 2.

In order to construct a Lagrange function from which
we can variationally derive Eq. (11a), we use the so
called Karush-Kuhn-Tucker (KKT) complementary con-
ditions [12]: after introducing dual variables αi and λyi ,
the constraints can be re-expressed as:

αi[yi(w
T
i xi + b)− 1 + ζi] = 0, (12a)

ζi(αi − λyi) = 0. (12b)

These KKT conditions state that if the variable xi lies on
the correct side of the hyperplane, with yi(w

T
i xi+b) > 1,

then αi = 0 and ζi = 0. On the other hand, if the variable
xi lies exactly on the margin, with yi(w

T
i xi+b) = 1, then

αi = λyi , and ζi = 0. Lastly, if the point xi lies on the
wrong side of the hyperplane, we have 0 < αi < λyi
and ζi > 0. In general, a number m′ < m of points xi
have a corresponding dual variable αi 6= 0. These points,
that lie on the separating hypersurface, are called support
vectors.
The KKT conditions allow us to write the Lagrange func-
tion of the problem as

L =
1

2
‖w‖2 +

m∑
i=1

αi[1− ζi − yi(wTxi + b)]

+

m∑
i=1

λyiζi −
m∑
i=1

βiζi, (13)

where αi, βi ≥ 0 are the Lagrange multipliers introduced
for the constraints (11b) and (11c) respectively. The
optimality condition is satisfied when the partial deriva-
tives with respect to the primal variables w, b, ζi vanish,

∂wL = w −
m∑
i=1

yiαixi = 0 (14a)

∂bL = −
m∑
i=1

yiαi = 0 (14b)

∂ζiL = λyi − αi − βi = 0,∀i. (14c)

Substituting Eqs. (14a),(14b) and (14c) into Eq. (13)
yields the Lagrange function expressed in terms of the
multipliers α = (α1, . . . , αm)

L(α) =

m∑
i=1

αi −
1

2

m∑
i,j=1

αiyiKijyjαj , (15)
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where K is called kernel matrix, and the component Kij

corresponds to the inner product 〈xi,xj〉 between the
feature vectors.

The matrix K encodes the power of the SVM algo-
rithm, that is able to perform a separation with a higher-
degree decision function. In principle, to do so one has
to embed the feature vectors into a higher dimensional
space with an embedding function Φ : Rd → RD, with
D > d, and find the linear hyperplane that separates
the data classes in the embedding space RD. As a re-
sult, the Lagrange function can be written as in Eq.(15),
with Kij = 〈Φ(xi),Φ(xj)〉 being the inner product in the
embedding space. The procedure of adopting a specific
kernel matrix K in order to move to a higher-dimensional
space is known as kernel trick [12].
One common choice is the polynomial kernel of degree n,
with K(x,x′) = (〈x,x′〉+ 1)n. It corresponds to embed-
ding the d dimensional vectors x and x′ into a space of
dimension [12]

D =

(
n+ d− 1

n

)
(16)

where we can look for a separating (D− 1)-surface. The
components of Φ(x) in the D-dimensional space come
from the D terms in the multinomial expansion of degree
n. The constant 1 plays an important role, as it allows
the presence of all the terms up to degree n in the decision
function f , while in its absence the decision function has
only the terms of degree exactly n. As the value of D
is extremely large for real case scenarios, the kernel trick
saves us from having to explicitly embed the data in a
much larger space and offers a smart way of coping with
the embedding process.

The classification of a new data point x consists simply
in calculating the decision function

f(x) =

m′∑
i=1

αiyiK(xi,x) + b, (17)

and the label will be given by the sign of f(x). Note that
the sum is made only over the m′ support vectors, as for
the other points the Lagrange multipliers are zero.

IV. SVM-DERIVED ENTANGLEMENT
WITNESSES

In this section we show how the separating hyperplane
provided by the SVM algorithm as a result of the mini-
mization in Eq. (11a) can be translated into a Hermitian
operator that we can measure to detect entanglement.
We also describe a procedure that can be implemented
on a quantum computer in order to measure its mean
value. The hyperplane inferred by the SVM has a huge
similarity with the concept of entanglement witness. The
classification in the SVM is calculated by considering the

FIG. 3. Schematic representation of a classification performed
on a convex set. (a) the separating hyperplane, represented by
the dotted line, divides the two classes +1 on the right, and−1
on the left, with a certain amount of true and false positives,
T+, F+, and true and false negatives T−, F−, therefore the
precision p < 1. (b) the separating hyperplane has been built
to mimic the behavior of an entanglement witness operator
Ŵ . In this case, there are not false positives, and the precision
p = 1.

sign of the decision function f(x). In a similar man-

ner, an entanglement witness operator Ŵ is such that if
Tr[Ŵ ρ̂] > 0 then the state ρ̂ is entangled [28], providing
a sufficient but not necessary condition for entanglement
detection. The convexity of separable states ensures us
that we can find such operator [1].

Consistently with the choices of Table I, we assign to
the separable states the label −1 and to the entangled
states the label +1. In order to evaluate the performance
of the classifier, we use the accuracy

a = (T+ + T−)/m, (18)

where m is the total number of states considered in
the dataset. Here T+, T− are the number of true
positives/negatives repsectively, i.e. the number of en-
tangled/separable states correctly classified as entan-
gled/separable. Furthermore, the precision p and the re-
call r associated to the classification of entangled states
are given by

p = T+/(T+ + F+), (19)

r = T+/(T+ + F−), (20)

where F+, F− represent the number of false pos-
itives/negatives respectively, i.e. the number of
separable/entangled states misclassified as entan-
gled/separable. The condition p = 1 indicates that we
are not misclassifying separable states as entangled.
Therefore, the hyperplane (w, b) that we find with
this condition respects the definition of entanglement
witness, see Fig. 3. We can get this condition by fine-
tuning the regularization hyperparameters λ+ and λ−
defined in equation (13). In fact, we assign to each data
point the regularization parameter λ+ or λ− depending
on whether it belongs to the class of entangled or
separable states, respectively. The condition λ+ > λ−
penalizes the misclassification of entangled states. On
the other hand, the condition λ− > λ+ penalizes the
misclassification of separable states, favoring thus the
classifier to correctly predict −1, leading in turn to a
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|+〉 Rx(π/2)

ρ̂⊗n
e−iŴnt

FIG. 4. Scheme for measuring the mean value of the opera-
tor Ŵn. The control qubit is in the state |+〉. A controlled

unitary gate with operator exp(−iŴnt) is applied on the n
copies of the system state ρ̂. The measurement is performed
on the control qubit after a π/2 rotation Rx. Thus, the mean

value is obtained as 〈Ŵn〉 = p1−p0
2t

, with p0 and p1 being the
probability that the outcome of the measurement is 0 or 1
respectively.

higher precision in classification of entangled states at
the cost of a lower recall. In terms of the classification
algorithm, the witness operator Ŵ is related to a
hyperplane with perfect precision of entangled states.
When the number of false positive F+ is minimized, we

mimic an entanglement witness operator Ŵ , with the
property that Tr[Ŵ ρ̂] > −b if and only if the state is
entangled, with b being the bias of the hyperplane, see
Eq. (9).

The operation Tr[Ŵ ρ̂] is related to a SVM hyperplane
with linear kernel, K(xi,xj) = xTi xj . In the following,
we will show that a more precise classification of entan-
gled states can be carried out by non-linear kernels of
degree n. The latter correspond to exotic witness opera-
tors Ŵn that work on n copies of the state ρ̂.
With little algebra one can show that the decision func-
tion (17) can be written as

fn(ρ̂) = Tr[Ŵnρ̂
⊗n] + b (21)

with the non-linear witness operator Ŵn given by

Ŵn =

m′∑
i=1

n∑
l=1

yiαi,l(ω̂
⊗l
i ⊗ 1

(n−l)
2 ) (22)

where m′ is the number of support vectors states. Here,

1
(k)
2 indicates the identity matrix in the space of k qubits,

with dimension 2k. The coefficients of the operator ω̂i
depend only on the i−th support vector state, which can
be found, together with the values of αi,l, via a classical
training of the SVM classifier.

In this way, the classification of an entangled state has
become the evaluation of the mean value of the Hermi-
tian operator Ŵn on the state ρ̂⊗n. As far as we know,
Eq. (22) is a novel equation that relates a classical SVM
hyperplane to a non-linear witness operator.

In order to measure the mean value of the Hermitian
operator Ŵn we can use the procedure described in [35]
and shown in Fig. 4, where a controlled unitary opera-
tor C-U , with U = exp(−iŴnt), is applied on a system
composed by the n copies of the system ρ̂.

The control qubit is initialized in the state |+〉. For

small t, we can expand the operator U ≈ 1 − itŴn +

O(t2). Measuring the mean value of the Pauli ma-
trix 〈σy〉 on the control qubit corresponds to measur-

ing t〈Ŵn〉. This can be achieved by transforming the
σy basis into the computational basis with the opera-
tor Rx(π/2) = exp(−iσxπ/4), and measuring the control
qubit. The probability of getting as outcome the state
|0〉 is p0 = 1/2 − t〈Ŵn〉, whereas the probability of get-

ting the outcome |1〉 is p1 = 1/2 + t〈Ŵn〉. Calculating
p1 − p0 and dividing by 2t leads to the wanted result.
Notice that the operator U is not a local operation, and
therefore, the state ρ̂ after the protocol will not in gen-
eral conserve the level of entanglement. Thus, if the goal
of the circuit is to use an entangled state as input of a
quantum protocol, we would need n+ 1 copies of ρ̂.

V. TWO-QUBIT SYSTEM

In this section we show the results of the SVM classi-
fication for a two-qubit system.
In order to provide the SVM a suitable dataset, we
need to uniformly sample the density matrices with re-
spect to the Hilbert-Schmidt (HS) measure [36]. Thus,
we generate 4 × 4 matrices A with C-numbers elements
Aij ∈ N (0, 1), N (0, 1) being the normal distribution
with zero mean and unitary variance. The quantum
state is obtained from the positive trace-one Hermitian
matrix ρ̂ = AA†/Tr[AA†]. Uniformly generating two-
qubit quantum states accordingly to the HS measure
leads to an imbalance in the classes, as the ratio be-
tween separable and entangled states is approximately
1 to 4 (≈ 0.24) [37]. We balance our dataset in order to
get 50% of entangled and 50% of separable states. This
inter-class balance allows us to have more control of the
hyperparameters. Indeed, in this case, when λ− = λ+

the SVM does not prefer any labeling on a new data
point. Hence, we separately generate an equal number of
entangled and separable states, labeling them with the
PPT criterion [6]. Our dataset consists of 106 samples
for each class, 98% of which are used in the training set,
1% are used in the validation set, and 1% are used in the
test set. Each data point lives in the feature space R15,
and is obtained by taking the real and imaginary part
of the components of the 4 × 4 density matrix, which is
hermitian and trace-one.

In order to fine-tune the hyperparameters, we look at
the validation set. The accuracy (18), the precision and
the recall 20 depend on the ratio λ−/λ+. Fig. (5) shows
the obtained precisions and recalls for different degrees
n of the kernel, n = 2 (a), n = 3 (b), n = 4 (c), and
the resulting accuracies on the validation set, calculated
varying the hyperparameters λ±. Note that using the im-
balanced training set, the result would have been analo-
gous, but shifted, and we would have got the same results
using a larger value of λ+. For each degree of the poly-
nomial kernel n, we find with a grid search the value of
λ−/λ+ s.t. on the validation set p = 1 and r is maxi-
mum. This point, with λ− = λ∗n and λ+ = 1, is located
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FIG. 5. Two qubits. Precision p and recall r defined in
Eqs. (19) and (20) of the two-qubits entanglement classifier
as a function of the regularization parameter λ− (λ+ = 1),
on a validation set of 104 samples for each class in the case
of polynomial kernel of degree (a) n = 2, (b) n = 3, and (c)
n = 4. The vertical dotted line refers to the point λ− = λ∗

n

for each n = 2, 3, 4, where r is maximum with the condition
p = 1 satisfied. (d) The accuracy on the validation set for
the classifier different degrees n = 2, 3, 4. The empty markers
correspond to λ− = λ∗

n.

at the orange vertical line in the plots in Figs. 5(a),(b)
and (c). Fig. 5(d) shows the total accuracy evaluated on
the validation set. We see that the classification accuracy
increases for higher degree n. Note that the highest accu-
racy is reached in correspondence of the point λ+ = λ−,
corresponding to a balanced dataset with an equal num-
ber of entangled and separable states. In fact, the value
λ−/λ+ where we reach highest accuracy changes depend-
ing on the population of the two classes in the dataset.
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FIG. 6. Two qubits. (a) The accuracy obtained by the n
degree polynomial classifier of two-qubit states, with n =
1, 2, · · · , 8. The classifier gains accuracy with a higher n. The
trend of the curve is the same for the three sets, showing that
the classifier is able to generalize. (b) The accuracy of the
classifier on the two classes.

Different degrees n of the polynomial kernel lead to
different performances of the algorithm. Fig. 6(a) shows
the accuracy of the classifier with λ+ = 1 and λ− = λ∗n
on training, validation, and test set for n = 1, 2, · · · , 8.
We see that by increasing the degree n we get a better
accuracy in classification on the test set, reaching the

value a ≈ 0.91 for the polynomial SVM with degree 8,
which indicates that the classifier is capable of general-
ization. From Fig. 6(b) we see that accuracy is almost
one for separable states, meaning that we selected the hy-
perparameters such that separable states are almost al-
ways correctly classified, while it tends to a value slightly
higher than 0.8 for entangled states.

VI. THREE-QUBIT SYSTEM

In the same spirit as the two-qubits classification, we
look for the hyperplane that minimizes the number of
misclassified separable states. The goal is to be as close
as possible to the border of the convex set of the sep-
arable states and to the definition of entanglement wit-
ness. However, the three-qubit classification of entangled
state has a different inherent nature, as we aim to clas-
sify our state into three different classes: the class of fully
separable states, the class of biseparable states and the
class of GME states. This is achieved by introducing two
classifiers. We call SEP-vs-all the classifier that aims at
splitting the space into fully separable states and either
biseparable or GME states; this classifier defines the op-
erator witness ŴS . We call GME-vs-all the classifier that
aims at splitting the GME states from the set of bisepa-
rable and fully separable states; this corresponds to the
operator witness ŴE . Note that the classifiers here de-
fined are able to distinguish only the GME states that
belong to the classes that we have used in the dataset,
see Table I. In fact, they are not able to classify states
whose classes have not appeared in the training set. This
is intrinsic in the nature of ML classifiers, that rely on
known data to label new states.

For a three-qubit system, the feature space is com-
posed of 63 real numbers describing the real and imag-
inary parts of the independent components of the 8 × 8
hermitian and trace-one density matrix. The datasets of
the two classifiers are obtained generating 2× 105 states,
90% of which are used in the training set, 5% are used in
the validation set, and 5% are used in the test set. Pure
and mixed fully separable states are easily generated by
construction and labeled as −1 for both the datasets of
the two classifiers. In the SEP-vs-all classifier, mixed
fully separable states are the 50% of the dataset, whereas
they are 25% of the dataset used for the GME-vs-all clas-
sifier.

GME states are labeled as +1 for both SEP-vs-all and
GME-vs-all classifiers.
The GME states are labeled according to the three-tangle
for generated pure GHZ states [23], defined in Eq. (3),
GHZ-symmetric states [34], and statistical mixture of
GHZ, W, and W̄ states [26]. In the case of mixed X-
state [27] we use the GME-concurrence, Eq. (6). We
refer the reader to Appendix A for the definition of these
states. Once we have generated these states, a random
local unitary transformation was applied on each qubit
to increase the number of data and fill the different com-
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FIG. 7. Three qubits. The accuracy obtained by the GME-vs-
all classifier. (a) The accuracy on the training, validation and
test sets. (b) The accuracy for different entanglement-type
states used in the training set, as a function of the kernel
degree n. The results are shown at the fixed ratio λ−/λ+ ob-
tained maximizing r on the validation set with the constraint
p = 1.

ponents of the density operator. Each category of GME
states is generated with the same number of samples,
and they are 25% of the SEP-vs-all dataset, and 50% of
the GME-vs-all dataset. The qualitative difference in the
datasets of the two classifiers lies in the label of bisepara-
ble states, as given in Table I. For the classifier SEP-vs-
all, only pure biseparable states can be considered in the
dataset, as a mixture of biseparable state can also be fully
separable. These states are generated and labeled as +1.
Their category represent the 25% of this dataset. On the
other hand, the dataset of classifier GME-vs-all contains
mixture of biseparable states with respect to the same
partition, and labeled as −1. This is because mixture
of biseparable states with respect to different partitions
can either be biseparable or fully separable, as shown in
Fig 1. They are the 25% of the samples in the GME-vs-all
dataset.

Let us examine the accuracy of both classifiers on the
different classes of states that we considered.
Fig. 7(a) shows the accuracy on the test set of the clas-
sifiers GME-vs-all for different values of the degree n,
n = 2, 3, · · · , 10. Fig. 8(a) shows the accuracy obtained
for the classifier SEP-vs-all on the test set. Figs. 7(b)
and 8(b) show the classification accuracy for each cat-
egory of entanglement states used in the dataset on the
corresponding test set. We notice that GHZ+W states
are more difficult to classify for both GME-vs-all and
SEP-vs-all classifiers. Instead, GHZ symmetric states are
correctly labeled with an accuracy ≈ 1 by the GME-vs-
all classifier, and with accuracy > 0.9 for n ≥ 3 by the
SEP-vs-all classifier.

Contrary to what happens for the two-qubit classifier,
we observe that the GME-vs-all classifier shows overfit-
ting for n > 4. This feature is captured by the spread
between the accuracies of the training and the valida-
tion sets shown in Fig. 7(a). The same happens to the
SEP-vs-all classifier for n > 6.
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FIG. 8. Three qubits. The accuracy obtained by the SEP-vs-
all classifier. (a) The accuracy on the training, validation and
test sets. (b) The accuracy for different entanglement-type
states used in the training set, as a function of the kernel
degree n. The results are shown at the fixed ratio λ−/λ+ ob-
tained maximizing r on the validation set with the constraint
p = 1.

VII. CONCLUSION

In this work we have investigated the possibility of us-
ing a SVM for classification of entangled states, for two-
qubit and three-qubit systems.

The SVM algorithm, which is known to be suitable for
binary classification of data points belonging to convex
sets, learns the best hyperplane that separates the set of
separable states from the set of entangled states. This
construction has a strong analogy with that of an entan-
glement witness operator, for which the sign of the mean
value calculated over the state, is related to the separabil-
ity of the latter. However, witness operators are usually
linear operators. In this paper we have shown that, ex-
ploiting the SVM algorithm and the kernel trick, we can
use many copies of the state and construct non-linear
witness operators, which show an increasing classifica-
tion accuracy. We believe that these constructions can
help us to gain knowledge about the geometry of the set
of entangled states.

In the application of the SVM to the two-qubit sys-
tem, we have evaluated accuracy, precision and recall for
kernels of degree n up to 8, reaching an increasing accu-
racy. For three-qubit systems we have trained two classi-
fiers, named SEP-vs-all, that distinguishes fully separa-
ble states to all the others, and GME-vs-all, for detection
of GME states, with kernels of degree n up to 10. The
SEP-vs-all classifier shows an accuracy on the test set of
92.5%, whereas the GME-vs-all classifier reaches an ac-
curacy of 98%, in the best case corresponding to n = 4.
Furthermore, we have checked the accuracy among the
different types of states that we have used in the dataset.

Overall, the SVM algorithm has shown a high accu-
racy in detecting entanglement. We have also discussed
how the classifier can be trained to favor higher precision
in recognition of entangled states, at the expenses of a
lower global accuracy. This feature can be used in quan-
tum computation algorithms, where entanglement plays
an important role for quantum advantage. Moreover, if
a quantum protocol needs a specific type of entangled
state, the SVM algorithm can be trained to recognize it
and use it as input.
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As entanglement classification is still an open line of re-
search both for the theoretical and fundamental aspects,
we believe machine learning algorithms can provide a use-
ful tool of analysis.
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Appendix A: Three-qubit entangled mixed states

In this appendix we briefly describe the three-qubit
GME states that we generated for the dataset of the SEP-
vs-all and GME-vs-all classifiers.

A GHZ symmetric state is characterized by three fun-
damental properties, i) it is invariant under index permu-
tation of the qubits, ii) it is invariant under simultaneous
spin flip of the qubits, and iii) it is invariant under the
rotation

U(φ1, φ2) = eiφ1σ̂z ⊗ eiφ2σ̂z ⊗ e−i(φ1+φ2)σ̂z . (A1)

This state can be written as a mixture of the two GHZ

states, with density operators ρ̂GHZ± , and of the maxi-
mally mixed state with density operator 1/8,

p ρ̂GHZ+
+ q ρ̂GHZ− + (1− p− q)1/8.

When q = 0, we have the so-called Werner state [38],
with a GHZ state combined with the maximally mixed
state. In Refs. [9, 24, 25], Eltschka et al. gave a complete
classification of GHZ symmetric states in terms of the
relation between the coefficients p and q.

The X-state owes its name to the shape of the den-
sity matrix, which has non null values on the diago-
nal and anti-diagonal elements. Thus the X-state den-
sity operator can be written as the sum D̂ + Â, with
D̂ = diag(a1, a2, . . . , an, bn, . . . , b1) the 2n× 2n diagonal

matrix, and Â = anti-diag(z1, . . . , zn, z
∗
n, . . . , z

∗
1) being

an anti-diagonal matrix. The conditions Tr[D̂] = 1 and

D̂ ≥ Â ensure that the operator D̂+ Â describes a phys-
ical state. The GME-concurrence of the X-state can be
analytically calculated [27], and when its value is posi-
tive, the X-state belongs to the GME class. Note that
the GHZ symmetric states are particular X-states with
zi = 0 for i = 2, . . . , n.

Another class that we have used to train our classifier
is the statistical mixture of GHZ, W, and the flipped W
state W̄ = 1√

3
(|011〉+ |101〉+ |110〉), that we have labeled

as GHZ+W, with density operator

p ρ̂GHZ + qρ̂W + (1− p− q) ρ̂W̄.
The analytic calculation of the three-tangle measure for
those states has been given in [24, 26, 34].
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