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We study a duality transformation from the gauge-invariant subspace of a ZN lattice gauge theory
on a two-leg ladder geometry to an N -clock model on a single chain. The main feature of this
mapping is the emergence of a longitudinal field in the clock model, whose value depends on the
superselection sector of the gauge model, implying that the different sectors of the gauge theory can
show quite different phase diagrams. In order to investigate this and see if confined phases might
emerge, we perform a numerical analysis for N = 2, 3, 4, using exact diagonalization.

Gauge theories constitute the baseline in our micro-
scopical description of physical fundamental laws and are
a cornerstone of contemporary scientific research. Calcu-
lations beyond perturbative regimes, as needed to un-
derstand for example the quark confinement mechanism
in quantum chromodynamics, represent a notorious chal-
lenge both analytically and numerically. Standard clas-
sical computational methods adopt the Wilson’s frame-
work of lattice gauge theories (LGTs) [1–3], in which
the continuous space–time is replaced by a discrete set
of points and the calculations are performed in the Eu-
clidean path-integral approach. More recently, inspired
by idea by Feynman about quantum simulations [4, 5],
many authors have adopted a Hamiltonian approach in
which only spatial coordinates are discretized, and which
might be implemented via a quantum platform once the
group degrees of freedom are also discretized, by consid-
ering a finite group or by suitable approximations (see
[6–10] and references therein). Still, in all approaches,
enforcing the gauge constraints to restrict the (analyti-
cal, numerical or experimental) evaluation of observables
to the gauge-invariant Hilbert subspace is a challenging
task, which is dealt with different strategies.

In this paper we consider Abelian LGTs, which are
known to exhibit confined/deconfined phases [11–19].
More specifically, we introduce a pure ZN gauge model
on a (quasi-2D) ladder geometry, which includes both
electric and magnetic degrees of freedom and admits su-
perselection sectors, similarly to what happens in the
Toric code. To tackle the problem of gauge invariance,
we make use of a bond algebraic approach [20, 21] to
introduce a duality transformation that allows for an ex-
act mapping from the LGT on the ladder restricted to
the gauge-invariant Hilbert space to a 1D N -clock model
[22–26] with a transversal field and a longitudinal field.
The value of the latter turns out to depend on the super-
selection sector of the ladder LGT, resulting in possible
different phase diagrams for the different sectors. To see
this, we use exact diagonalization to calculate Wilson
loops and study the appearance of confined phases.

The lattice gauge model. Following the Hamil-
tonian approach of Kogut and Susskind [2], we consider
a class of pure Abelian lattice gauge theories, with ZN
gauge group, on a ladder geometry, which consists of
a lattice L made of two parallels chains, the legs, cou-
pled to each other by rungs to form square plaquettes.
On the ladder, each rung is identified by a coordinate
i = 1, . . . , L, where L is the length of the ladder, and the
two vertices on the rung are denoted with i↑ and i↓ in
the upper and lower leg, respectively. Links are denoted
by `. On the legs they are labelled as `↑i (upper leg) or
`↓i (lower leg), while those on the rungs are labelled `0i .

The gauge group degrees of freedom are defined on
the links. For a finite group like ZN , the notion of in-
finitesimal generators loses any meaning and we are led
to directly consider, for each link ` ∈ L, a pair of conju-
gate operators, U` and V` which are unitary and defined
by the algebraic relations [27–29]

V`U` = ωU`V`, UN` = V N` = 1N (1)

with ω = ei( 2π
N +φ), where the angle φ is arbitrary and

corresponds to the physical situation in which on each
link there is a background electric field [29, 30]. In this
letter we don’t consider this situation and will set φ = 0.
Also, these operators commute on different links. This
algebra admits a faithful finite-dimensional representa-
tion of dimension N [28, 31]. To each link `, we associate
an N -dimensional Hilbert space H` generated by an or-
thonormal basis {|vk,`〉}, with k = 0, . . . , N − 1, the elec-
tric basis, that diagonalizes V`, with: V` |vk,`〉 = ωk` |vk,`〉.
On this basis, U` acts as a shift operator, i.e. U` |vk,`〉 =
|vk+1,`〉, where k + 1 is taken mod N .

As shown in the top panel of Fig. 1, we use the sym-
bols V 0

i , U
0
i for the operators defined on the rung i, and

V ρi , U
ρ
i with ρ =↑, ↓ for the operators on the horizon-

tal links of the upper and lower leg to the right of the
rung. The links on the legs are oriented from left to right
while those on the rungs from bottom to top. To con-
struct a LGT, in addition to the electric field operators
V ’s defined above, we need:
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FIG. 1. Visual representation of local operators of the ZN

ladder LGT and the duality transformation to the N -clock
model.

• the magnetic operators, which are defined on each
plaquette to the right of the rung i via the formula:

Ui = U↓i U
0
i+1 (U↑i )† (U0

i )†; (2)

• the Gauss operators, which are defined on each ver-
tex i↑, i↓ of the lattice as:

G↑i = V ↑i (V ↑i−1)†(V 0
i )†, G↓i = V ↓i V

0
i (V ↓i−1)† (3)

and implement local gauge transformations, by
imposing that physical states should satisfy:
Gρi |Ψphys〉 = |Ψphys〉 for ρ =↑, ↓ and ∀i.

It is simple to verify that the Ui-operators commute with
all Gauss operators, making them gauge invariant.

The gauge-invariant Hamiltonian we use to build a ZN
LGT on the ladder can be written as:

HZN = −
∑
i

[
Ui + λ

(
V ↑i + V ↓i + V 0

i

)
+ h.c.

]
, (4)

with λ > 0. We use periodic boundary conditions on
legs.

Similarly to what happens in the two dimensional Toric
Code [13, 32], the Hilbert space of physical states Hphys
can be decomposed as a direct sum of superselection sec-
tors H(n)

phys, where n = 0, . . . , N − 1, that can be distin-
guished by means of the operators

S = V ↑i0V
↓
i0
, W =

∏
i∈C0

U↓i , (5)

where i0 labels the position of an arbitrary rung in the
lattice, while C0 is any non-contractible loop around the
ladder. They satisfy the relations: W S = ωSW . Each
physical state in a sector H(n)

phys is an eigenstate of S
with eigenvalue ωn, while W maps H(n)

phys into H(n+1)
phys

(see [33]).

Duality transformation to clock models. Clock
models [22–24] are a class of models that can be thought

as a generalization of the quantum Ising model. A p-
state clock model on a chain has a local p-dimensional
Hilbert space for each site i = 1, . . . , L and employs p×p
unitary matrices Xi and Zi that commute on different
sites, while on the same site

XiZi = ωZiXi, (Xi)p = (Zi)p = 1p, (6)

with ω = ei2π/p. For example, one can choose a basis
where the Zis are diagonal, i.e. (Zi)mn = δm,nω

m and
(X)mn = δm,n+1 (mod p), with m,n = 0, . . . , p− 1. The
p-clock Hamiltonian is given by

Hp(h) = −
∑
i

(
Z†i−1Zi + hXi + h.c.

)
, (7)

where periodic boundary conditions are assumed.
We use the bond-algebraic approach to dualities [20],

to introduce a gauge reducing duality mapping between
the ZN gauge model (with redundant degrees of freedom)
on the ladder and an N -clock model on a single chain.
As a first step, similarly to what it can be done in 2D
[3, 20, 34], we associate to each plaquette of the LGT a
site of the chain of the clock model, in such a way that the
gauge-invariant magnetic operator Ui is mapped into the
single-body operator Xi. Also, since the electric field on
a rung link `0i is the result of the flux difference between
the two adjacent plaquettes, we map the operator V 0

i to
a kinetic-type term of the kind Z†i−1Zi. As a second step,
we consider the ladder operators V ↑i and V ↓i that explic-
itly enter the definition of the Gauss law operators of (3)
and the S operators of (5). We define the mapping to
clock-operators via: V ↓i 7→ α↑iZi, V

↑
i 7→ α↓iZ

†
i , where the

complex coefficients α↑i , α
↓
i have to be chosen so that:

i) the algebra commutation relations (1) are preserved;
ii) Gauss law is automatically enforced, i.e. G↑i , G

↓
i 7→ 1;

iii) in each superselection sector we have S 7→ ωn1.
These requirements lead to the following sector-
dependent duality map (see [33]):

Ui 7−→ Xi, V 0
i 7−→ Z†i−1Zi,

V ↑i 7−→ Z†i , V ↓i 7−→ ωnZi.
(8)

that transforms the Hamiltonian (4) into λHN , where
HN is

HN = Hp(1/λ)−
[

(1 + ωn)
∑
i

Zi + h.c.
]
. (9)

The novelty of (9) is the appearance of a longitudinal field
term, with a coupling (1 + ωn) that depends explicitly
on the superselection sector n. Notice that when N is
even, the longitudinal field is zero for n = N/2 . This
simple fact makes it reasonable to think that different
superselection sectors of the same ladder model can have
drastically different phase diagrams.
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Let us remark that the complex coupling (1+ωn) does
not make the Hamiltonian (9) necessarily chiral [35, 36].
In fact, one can get the real Hamiltonian

HN = Hp(1/λ)− 2 cos
(πn
N

)∑
i

(
Zi + Z†i

)
. (10)

by absorbing the complex phase in the Zi-operators, with
the transformation Zi 7→ w−n/2Zi. This transformation
globally rotates the eigenvalues of the Zi-operators, while
preserving the algebra relations. For n even, this is just
a permutation of the eigenvalues, meaning that it does
not affect the Hamiltonian spectrum. Instead, for n odd,
up to a reorder, the eigenvalues are shifted by an angle
π/N , i.e. half the phase of ω. The energy contribution
of the extra term in (10) depends on the real part of
these eigenvalues and for n odd we obtain that the low-
est energy state is no longer unique, in fact it is doubly
degenerate. This means that for λ → ∞, where the ex-
tra term becomes dominant, we expect an ordered phase
with a doubly degenerate ground state. Finally, one can
easily prove that the sectors n and N − n are equivalent
[37].

Numerical investigations. We wish to investi-
gate the presence of a deconfined-confined phase transi-
tion (DCPT) for a given ZN ladder LGT. In a pure gauge
theory, these phases can be detected with the perime-
ter/area law for Wilson loops [1], which can be expressed
as the products of magnetic operators over a given re-
gion. Unfortunately, in a ladder geometry there is not
much difference between the area and the perimeter of a
loop, since they both grow linearly in the size system L.

Nonetheless, we expect a phase transition by varying λ
[13, 15, 16] that can still be captured by an operator like
WR =

∏
i∈R Ui, the product of magnetic operators U ’s

over a (connected) region R. Indeed, when λ = 0, the
Hamiltonian (4) is analogous to a Toric Code [32] which
is known to be in a deconfined phase, where the (topo-
logically distinct) ground states are obtained as uniform
superpositions of the gauge-invariant states, i.e. closed
electric loops. On these ground states 〈WR〉 = 1, hence
a value 〈WR〉 ≈ 1 signals a deconfined phase. On the
other hand, when λ → ∞, the electric loops are sup-
pressed, hence 〈WR〉 ≈ 0, signalling a confined phase.

In the dual clock model picture, the Wilson loop trans-
lates to a disorder operator [34], which means that a de-
confined phase can be thought of as a paramagnetic (or
disordered) phase, while the confined phase is like a ferro-
magnetic (or ordered) phase. Moreover, the longitudinal
field breaks the N -fold symmetry of the ferromagnetic
phase into a one-fold or two-fold degeneracy, depending
on the parity (n even/odd) of the superselection sector.

We study the ZN LGT on a ladder numerically through
exact diagonalization, by evaluating the half-ladder Wil-
son loop, i.e.

W = U1U2 · · ·UL/2, (11)
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FIG. 2. Half-ladder Wilson loop for the Z2 LGT in the
sectors n = 0 (top) and n = 1 (bottom), for different lattice
sizes (for length L = 10 to L = 18). The sector n = 0 presents
only a deconfined point at λ = 0 and then decays rapidly into
a confined phase, while the sector n = 1 has a phase transition
for λ ' 1.

and working in the restricted physical Hilbert space
H(n)

phys (n = 0, . . . , N−1), which has dimension NL, much
smaller than N3L (the dimension of the total Hilbert
space).

The naive and brute-force method for building Hphys
would require checking the Gauss law at every site (which
are O(3L) operations) for all the possible N3L candidate
states. On the other hand, the gauge-reducing duality
to clock models provides a faithful and efficient method
for building the NL+1 basis states of Hphys, yielding a
major speedup with respect to the naive method (see
[33]). The procedure is quite simple and it consists in
treating a clock state as a plaquette flux state in the
following way. Let |Ω0〉 be the vacuum state where all
the links are in the |0〉 state. For each sector n we can
build a “vacuum” state |Ωn〉 by applying W in (5) n
times on the true vacuum, i.e. |Ωn〉 = W

n |Ω0〉. Then, let
|s1s2 · · ·〉 be a configuration of the dual N -clock model,
where si = 0, . . . , N−1. Now, the equivalent ladder state
in the n-th sector can be obtained with

∏
i U

si
i |Ωn〉.

In the following, we present the results with N = 2, 3
and 4, for different lengths.

Results for N = 2. As a warm up, we consider the
Z2 ladder LGT, with lengths L = 10, 12, . . . , 18. This
model is equivalent to a p = 2 clock model, which is just
the quantum Ising chain, with only two superselection
sectors for n = 0 and n = 1. When n = 1, the Hamilto-
nian contains only the transverse filed and is integrable
[38]. Thus, we expect a critical point for λ ' 1, which
will be a DCPT in the gauge model language. This is
clearly seen in the behaviour of the half-ladder Wilson
loop, as shown in the lower panel of Fig. 2. For n = 0,
both the transverse and longitudinal fields are present,
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FIG. 3. Half-ladder Wilson loop values for Z3 LGT for the
sectors n = 0 (top) and the two equivalent ones n = 1, 2
(bottom), for sizes L = 7, 9, 11 and 13.
Inset: energy differences ∆Ei = Ei − E0 for i = 1, 2, as a
function of the coupling λ, in the sectors n = 1, 2, showing
the emergence of a double-degenerate ground state for λ > 1.

the model is no longer integrable [39–41] and we expect
to always see a confined phase, except for λ = 0. This
is indeed confirmed by the behaviour of the half-ladder
Wilson loop shown in the upper panel of Fig. 2.

We can further characterize the phases of the two sec-
tors by looking at the structure of the ground state, for
λ < 1 and λ > 1, which is possible thanks to the exact
diagonalization. In particular, in the deconfined phase of
the sector n = 1, the ground state is a superposition of
the deformations of the non-contractible electric string
that makes the n = 1 vacuum |Ω1〉. For this reason, this
phase can be thought as a kink condensate [34] (which
is equivalent to a paramagnetic phase), where each kink
corresponds to a deformation of the string. Instead, for
λ > 1, where we have confinement (as in the n = 0 sec-
tor), the ground state is essentially a product state, akin
to a ferromagnetic state (see [33]).

Results for N = 3. The Z3 LGT is studied for lengths
L = 7, 9, 11 and 13. This model can be mapped to a 3-
clock model, which is equivalent to a 3-state quantum
Potts model with a longitudinal field, which is present
in all sectors, as one can see from (10). This field is ex-
pected to disrupt any ordered state and thus it is not
possible to observe a phase transition, as it is confirmed
by the behaviour of the half-ladder Wilson loops shown
in Fig. 3. In addition, all the sectors present a deconfined
point at λ = 0. In the case n = 0, for λ > 0 we recog-
nize a quick transition to a confined phase, similar to
what happens in [19]. While for n = 1 and 2 (which are
equivalent), the model exhibits a smoother crossover to
an ordered phase characterized by a doubly-degenerate
ground state, for λ > 1. Notice that, as discussed above,
the presence of the “skew” longitudinal field breaks the
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FIG. 4. Half-ladder Wilson loop values for the Z4 LGT for all
the sectors (n = 0, . . . , 3) and different sizes (L = 6, . . . , 10).
Only the sector n = 2 has a clear deconfined-confined phase
transition, as expected from the duality with the 4-clock
model.

three-fold degeneracy expected in the ordered phase of
the 3-clock model into a two-fold degeneracy only.

Results for N = 4. The Z4 ladder LGT has four su-
perselection sectors. The behaviour of half-ladder Wilson
loops as function of λ is shown in Fig. 4. As in the previ-
ous models, for n = 0 we see a deconfined point at λ = 0,
followed by a sharp transition to a confined phase. The
sector n = 2, which has no longitudinal field, is the only
one to present a clear DCPT for λ ≈ 1, as it is expected
from the fact that the 4-clock model is equivalent to two
decoupled Ising chains [23]. In the two equivalent sectors
n = 1 and 3, where the longitudinal field is complex, the
Wilson loop shows a peculiar behaviour, at least for the
largest size (L = 10) of the chain: it decreases fast as
soon λ > 0, to stabilize to a finite value in the region
0.5 . λ . 1, before tending to zero. The characteristics
of this phase would deserve a deeper analysis, that we
plan to do in a future work. For λ & 1, the system en-
ters a deconfined phase with a double degenerate ground
state, as for the Z3 model.

Conclusions and outlooks. In this work, we pro-
posed an exact gauge preserving duality transformation
that maps the ZN lattice gauge theory on a ladder onto
a 1D N−clock model in a transversal field, coupled to a
possibly complex longitudinal field which depends on the
superselection sector.

This map allowed us to perform numerical simulations
with an exact diagonalization algorithm with sizes up to



5

L = 18, 13, 10 for N = 2, 3, 4 respectively. To study the
phases of the model and a possible DCPT transition, we
calculated the Wilson loops in the different topological
sectors, finding an unusual behaviour in the sectors with
n odd (mod N), possibly suggesting the emergence of
a new phase, such as for example the incommensurate
phase appearing in chiral clock models [25, 36, 42], whose
characterization requires however to consider longer sizes
of the chain in order to evaluate the asymptotic behaviour
of correlators. This will be the subject of future work,
in which we can also consider the possibility to include
static and dynamical matter in the lattice gauge model.
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Supplemental Materials to “Discrete Abelian lattice gauge theories on a ladder and
their dualities with quantum clock models”

In order to understand the structure of the ZN lattice gauge model on a ladder geometry, we
review here the definition and the properties of the analogous model in two dimensions, by also
discussing the bond-algebraic approach to find a gauge-reducing duality transformation. We
then adapt the latter to the ladder model, obtaining an N -clock model with both transversal
and longitudinal field. Finally, we give some details on the results of the numerical analysis
performed via exact diagonalization.

I. REVIEW OF TWO-DIMENSIONAL LGTS
AND THE TORIC CODE

In this section we review lattice gauge theories (LGT)
on a two dimensional lattice and their connection to the
Toric Code. To do so, we introduce the Schwinger-Weyl
algebra and lattice gauge transformations.

According to Wilson’s Hamiltonian approach to lat-
tice gauge theories [1], U(1) gauge fields are defined on
the links of a lattice L either in a pair of conjugate vari-
ables, the electric field E` and either the vector potential
A`, satisfying [E`, A`′ ] = iδ`,`′ , or equivalently the mag-
netic operator, also called comparator, U` = e−iA` , such
that [E`, U`′ ] = δ`,`′ U`, all acting on an infinite dimen-
sional Hilbert space defined on each link. This form of the
canonical commutation relations represents the infinitesi-
mal version of the relations: eiξEe−iηAe−iξE = eiξηe−iηA,
for any ξ, η ∈ R, that define the Schwinger-Weyl group
[27–29].

For a discrete group like ZN , the notion of infinitesi-
mal generators loses any meaning and we are led to di-
rectly consider, for each link ` ∈ L, two unitary operators
V`, U`, such that [27, 45]

V`U`V
†
` = e2πi/NU`, UN` = 1N , V N` = 1N .

(S1)
while on different links they commute. Thus, by repre-
senting ZN with the set of the N roots of unity ei2πk/N

(k = 1, · · · , N), commonly referred to as the discretized
circle, we see that V plays the role of a “position opera-
tor” on the discretized circle, while U that of a “momen-
tum operator”.

These algebraic relations admit a faithful finite-
dimensional representation of dimension N [31], for any
integer N , which is obtained as follows. To each link `,
we can associate an N -dimensional Hilbert space H` gen-
erated by an orthonormal basis {|vk,`〉} (k = 1, . . . , N),
called the electric basis, that diagonalizes V`. With this
choice, we can promptly write the actions of U` and V`:

U |vk,`〉 = |vk+1,`〉 , U |vN,`〉 = |v1,`〉
U† |vk,`〉 = |vk−1,`〉 , U† |v1,`〉 = |vN,`〉
V |vk,`〉 = ωk |vk,`〉 , V † |vk,`〉 = ω−k |vk,`〉 ,

(S2)

(x, 1̂)

(x, 2̂)

x x + 1̂

x + 2̂

FIG. S1. Labelling of the sites and the links in the two
dimensional lattice. A site is labeled simply with x = (x1, x2),
while 1̂ = (1, 0) and 2̂ = (0, 1) stand for the unit vectors of the
lattice. A link ` is denoted with a pair (x,±î), with î = 1̂, 2̂.

where ω = e2πi/N and k = 0, . . . , N − 1. We choose to
work in this particular basis and the various k can be
interpreted as the quantized values of the electric field
on the links.

On a two-dimensional square lattice of size L×L, the
links ` of the lattice can also be labeled with (x,±î),
where x ∈ L is a site and î = 1̂, 2̂ the two independent
unit vectors. In this way, (x,±î) will refer to the link that
starts in x and goes in the positive (negative) direction î
(see Fig. S1). This notation will be simplified when we
reduce to the ladder case.

Gauge invariance and physical states

Gauge transformations act on vector potentials while
preserving the electric field. For a U(1) gauge the-
ory, a local phase transformation is induced by a real
function αx defined on the vertices x ∈ L, such
that A` → A` + (αx2 − αx1) or equivalently U` →
ei(αx2−αx1 )E`U`e

−i(αx2−αx1 )E` , where x1, x2 are the ini-
tial and final vertices of the (directed) link `. In the case
of a discrete symmetry, a gauge transformation at a site
x ∈ L is a product of V ’s (and V †’s) defined on the links
which comes out (and enters) the vertex. More specifi-
cally, for a two dimensional lattice, if the link ` at site x
is oriented in the positive direction, i.e. either (x,+1̂) or
(x,+2̂), then V is used, otherwise V †. Thus, the single
local gauge transformation at the site x is enforced by
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the operator:

Gx = V(x,1̂)V(x,2̂)V
†
(x,−1̂)V

†
(x,−2̂), (S3)

as shown in the left part of in Fig. S2.
The whole operator algebra A of the theory is gener-

ated by the set of all U` and V` (and their Hermitian
conjugates) of all the links of the lattice L, while the
gauge-invariant subalgebra Agi consists of operators that
commute with all the Gx:

Agi = {Ogi ∈ A : [Ogi, Gx] = 0 ∀x ∈ L}. (S4)

Using (S3) and recalling (S1), it is possible to see that
the V`’s commute with Gx (as expected), while the U`’s
do not. In spite of that, we can build gauge-invariant
operators out of the comparators U`. Consider a plaque-
tte � of the lattice L at x, by which we mean the face
of the lattice with vertices {x, x+ 1̂, x+ 1̂ + 2̂, x+ 2̂} in
the counterclockwise order, as shown in the right part of
Fig. S2. On this plaquette, the operator U� is defined as

U� = U(x,1̂)U(x+1̂,2̂)U
†
(x+1̂+2̂,−1̂)U

†
(x+2̂,−2̂). (S5)

and one finds out that the U�’s commute with Gx, for
all x ∈ L, thus giving a generator of Agi.

The set {U�, V`} (for all plaquettes � and all links `)
may not be enough to generate the whole algebra Agi, in
case of periodic boundary conditions. In order to prove
this, consider a lattice L, periodic in both dimensions,
and denote with C1 and C2 any two non-contractible loops
around the lattice, that extends along the 1̂ and 2̂ direc-
tion respectively. Then, define the (Wilson loop) opera-
tors W 1 and W 2 (pictured in blue in Fig. S3):

W i =
∏
`∈Ci

U`, i = 1, 2. (S6)

A simple calculation shows that both W 1 and W 2 com-
mute with all Gx, thus they are gauge-invariant, but one
also finds out that none of them can be written as a
product of U� nor V`. Therefore they have to be added
explicitly to the set of generators of Agi in order to obtain
the whole algebra. These operators W 1 and W 2 play a
fundamental role in the model to define topological sec-
tors of the theory, as we will see later.

The total Hilbert space Htot is given by the ⊗`H`.
A state of the whole lattice |Ψph〉 ∈ Htot is said to be
physical if it is a gauge-invariant state:

Gx |Ψph〉 = |Ψph〉 , ∀x ∈ L (S7)

This condition can be translated into a constraint on the
eigenvalues v(x,±î) = ωk(x,±î) of the operators V` on the
links ` = (x,±î) of the vertex x:

v(x,1̂)v(x,2̂)v
∗
(x,−1̂)v

∗
(x,−2̂) = 1, (S8)

U

U

U†

U† U□

V

V

V †

V †

Gx

FIG. S2. Pictorial representation of the Gauss operators Gx

in (S3) (left) and plaquette operator U� in (S5) (right).

or, because of (S2):∑
i=1,2

(
k(x,̂i) − k(x,−î)

)
= 0 mod N. (S9)

Given the fact that the k’s in (S1) represent the values of
the electric field, one can see that (S9) can be interpreted
as a discretized version of the Gauss law ∇· ~E = 0 in two
dimensions, for a pure gauge theory where there are no
electric charges.

ZN Hamiltonian and the Toric Code

The class of models we consider are described by the
Hamiltonian [13, 15, 16]:

HZN (λ) = −
∑
�
U� − λ

∑
`

V` + h.c., (S10)

where the first sum is over the plaquettes � of the lattice
while the second sum is over the links `. One can easily
see that this Hamiltonian is local and gauge-invariant,
hence the dynamics it describes is fully contained in
Hphys. Furthermore, the operator U� plays the role of a
magnetic term, to be more precise it is the magnetic flux
inside the plaquette �, while V is the electric term. The
coupling λ tunes the relative strength of the electric and
magnetic energy contribution.

These models are akin to the Toric Code [32], which
can be thought as a prime example of a Z2 lattice gauge
theory. More precisely, HZ2 in (S10) can be thought as
a deformation of the former, where an external “trans-
verse” field is added to it. Indeed, using the notation
used so far, the Toric Code can be formulated as:

HTC = −Jm
∑
�
U� − Je

∑
x

Gx. (S11)

whose ground states |Ψ〉 satisfy the constraints

U� |Ψ〉 = |Ψ〉 ∀ �, Gx |Ψ〉 = |Ψ〉 ∀x. (S12)

Only elementary excitations above the ground state can
violate these constraints and they can be of two type: a
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C1
W1

C2

W2

C̃1

S1

C̃2

S2

FIG. S3. Graphical representation of the non-local order pa-
rameters W 1,2 (in blue) and S1,2 (in red) and their respective
paths C1,2 and C̃1,2.

magnetic vortex (which violates the plaquette constraint)
or a electric charge (which violates the Gauss law). If one
imposes Je � Jm to enforce Gauss law, in the low-energy
sector there are no electric charges and one recovers the
pure gauge Z2 model of (S10) for λ = 0. Therefore, in
general the ZN models described in (S10) can be consid-
ered as generalization of the Toric Code, from the point
of view of lattice gauge theories.

Topological sectors

Let us consider the Toric Code. One of its main fea-
tures is the presence of topologically protected degener-
ate ground states [32]. In order to illustrate this, besides
W 1 and W 2, defined in (S6), another type of non-local
operators have to be introduced. They are defined on
cuts of the lattice L, i.e. paths on the dual lattice L̃.
Consider non-contractible cuts C̃1 and C̃2 along the direc-
tions 1̂ and 2̂, respectively. On this cuts, the (’t Hooft
string) operators S1 and S2 are constructed as

Si =
∏
`∈C̃i

V`, i = 1, 2, (S13)

in a similar fashion to (S6). This is shown in red in
Fig. S3. The operators W i and Si (i = 1, 2) commutes
with all the operators U� and Gx in the Toric Code
Hamiltonian HTC of (S11), but do not commute with
each other. In fact, we have W iSj = −SjW i if i 6= j.
This means that HTC can be block-diagonalized with re-
spect to the eigenvalues of Si (or W i), while W j (or Sj)
connects one block to the other. Furthermore, since in
the case of the Z2 symmetry, Si (or W i) has only two
eigenvalues (equal to ±1), there are a total of 2 × 2 = 4
degenerates ground states, which are topologically pro-
tected, thanks to the fact that W j (or Sj) cannot be

expressed in terms of the local operators U� and Gx.
Notice that, as it can be easily seen, in the Toric Code
the role of W i and Si can be interchanged.

Let us now turn to ZN LGT models. The operators
W i no longer commute with the Hamiltonian (S10) which
now contains an electric field term. Thus, λ 6= 0, we
have no degenerate ground states. But we can still use
the Si operators to decompose the Hilbert space Hphys,
since they still commute with all the local operators U�
and V` (thus also with HZN ). Now one can see that the
operator Si (i = 1, 2) of (S13) has N eigenvalues ωn,
with n = 1, . . . , N − 1. Hence, one can decompose Hphys
as sum of superselection sectors

Hphys =
N−1⊕
n,m=0

H(n,m)
phys , (S14)

where for each |φ〉 ∈ H(n,m)
phys we have:

S1 |φ〉 = ωm |φ〉 , S2 |φ〉 = ωn |φ〉 . (S15)

Let us consider now the role of the Wilson loops W i. One
can easily see that:

W 2S1 = ωS1W 2, W 1S2 = ωS2W 1. (S16)

It follows that W 1,2 acts a shift operators for the
eigenspaces of S2,1:

W 1 : H(n,m)
phys → H

(n+1,m)
phys , W 2 : H(n,m)

phys → H
(n,m+1)
phys ,

(S17)
where the integers n + 1 and m + 1 have to be taken
mod N .

From a physical point of view, the Wilson loops oper-
ators W 1 and W 2 create non-contractible electric loops
around the lattice, while the ’t Hooft strings S2 and S1
detect the presence and the strength of these electric
loops. Therefore, it is clear that the Hilbert subspace
H(n,m)

phys is the subspace of all the states that contains an
electric loop of strength ωn and ωm along the 1̂ and 2̂
direction, respectively. Furthermore, the evolution of a
state in H(n,m)

phys with the Hamiltonian in (S10) is confined
in H(n,m)

phys .

II. REVIEW OF THE BOND-ALGEBRAIC
APPROACH TO DUALITIES

In this section we review the bond-algebraic approach
to dualities, because it offers a convenient way for dealing
with duality transformations applied to gauge models.
Details can be found in [20].

The concept of bond-algebra was introduced in [21] and
it stems from the fact that most Hamiltonian are a sum
of simple and (quasi)local terms:

H =
∑

Γ
λΓhΓ, (S18)
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where Γ is a set of indices (e.g. the lattice sites, as in the
case we consider here) and λΓ are numbers. The terms
hΓ are called bond operators (or simply bonds) and they
form a bond algebra A{hΓ}, which is the linear space of
operators generated by all products of the bonds hΓ and
their Hermitian conjugates. The bonds hΓ that generate
A{hΓ} need not to be independent. Let us point out that
a single Hamiltonian H can have different bond algebras
associated to it, since the latter depend on how the total
Hamiltonian H is partitioned into local terms.

In this framework, quantum dualities can be formu-
lated as homomorphisms of bonds algebras, i.e. structure
preserving mappings between bond algebras. To be more
precise, two Hamiltonians H1 and H2 that act on state
spaces of the same dimension are said to be dual if there
is some bond algebra AH1 of H1 that is homomorphic
to some bond algebra AH2 of H2 and if the homomor-
phism Φ : AH1 → AH2 maps H1 onto H2, Φ(H1) = H2.
These mappings do not need to be isomorphisms, espe-
cially when gauge symmetries are involved, as we will
explain below. Dualities, in this approach, are local with
respect to the bonds, i.e. they map one bond hΓ1 of H1
to one bond hΓ2 of H2, a fact that does not imply locality
with respect to the elementary degrees of freedom, since
the generators of a bond algebra are in general two (or
more) body operators and a large (if not infinite) prod-
ucts of them is required to construct operators expressing
elementary degrees of freedom.

To make this approach clearer we now apply it to
the 1D quantum Ising model with transverse field. The
Hamiltonian HIsing is

HIsing(λ) =
∑
i

(
σzi σ

z
i+1 + λσxi

)
(S19)

where σxi and σzi are the usual Pauli matrices for spin S =
1/2. We recognize as basic bonds the operators {σxi } and
{σzi σzi+1}. Their algebra relations can be summarized as
follows:

• (σxi )2 = 1 and (σzi σzi+1)2 = 1

• for the bond σxi we have that {σxi , σzi σzi+1} = 0 and
{σxi , σzi−1σ

z
i } = 0, while it commutes with every

other bond;
• for the bond σzi σzi+1 we have that {σzi σzi+1, σ

x
i } = 0

and {σzi σzi+1, σ
x
i+1} = 0, while it commutes with

every other bond.

Let us define the mapping Φ on the bonds as follows:

Φ(σzi σzi+1) = σxi , Φ(σxi ) = σzi−1σ
z
i , (S20)

which easily extends to the full bond-algebra AIsing. It is
clear that this map preserves all the important algebraic
relationship and is one-to-one, hence it is an isomorphism
of AIsing onto itself. The Hamiltonian HIsing is just an

element of AIsing and through Φ gets transformed to

Φ(HIsing(λ)) =
∑
i

(
σxi + λσzi σ

z
i+1
)

= λHIsing(λ−1),

(S21)
yielding the standard duality transformation for the Ising
model [34, 46].

A bond isomorphism on a bond algebra A is physically
sound if it is unitarily implementable [20], i.e. if there
exists a unitary matrix U such that

Φ(O) = UOU†, ∀O ∈ A, (S22)

a fact that we will assume from now on.
Let us now recall the notion of gauge-reducing dual-

ities. The domain of such a map is a bond algebra of
a model with gauge symmetries, i.e. a model with local
constraints that signal the presence of redundant degrees
of freedom. In this case, the space of states is larger than
the set of physical states, which are invariant under the
action of the local gauge operators. Also, a physical ob-
servable is represented by a gauge invariant Hermitian
operator, i.e. an operator commuting with all local con-
straints. A gauge-reducing transformation trivially maps
all local gauge operators to the identity, so its image is a
“non-gauge” model.

In formulae, a gauge-reducing duality ΦGR has the
properties:

ΦGR(HG) = HGR, ΦGR(GΓ) = 1, ∀Γ. (S23)

where we have denoted with HG the gauge Hamiltonian
and GΓ the group of its gauge symmetries and by HG
the image (non-gauge) Hamiltonian.

A gauge-reducing duality needs to be implementable
as a projective unitary operator U only:

ΦGR(O) = UOU†, UU† = 1, U†U = PGI (S24)

where PGI is the projector of the subspace of gauge-
invariant states, i.e. GΓ |ψ〉 = |ψ〉 for all Γ.

A clear example of a gauge-reducing duality is pro-
vided by the ZN gauge model in two-dimensions of (S10),
whose symmetry group is generated by (S3). For simplic-
ity we illustrate here the Z2 case, where the V ’s are taken
to be the Pauli operators σz and the U ’s to be σx, so that
the Gauss operators are given by

Gr = σz(x,1̂)σ
z
(x,2̂)σ

z
(x,−1̂)σ

z
(x,−2̂), (S25)

while the gauge-invariant bond algebra is generated by{
σz(x,1̂), σ

z
(x,2̂), U�

}
(S26)

for which the following relations hold:

• all the bonds square to the identity;
• each spin σz anti-commutes with two adjacent pla-

quettes operators U�;
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• each plaquette operator U� anti-commutes with
four spins σz.

This set of relations is identical to those satisfied by
the bonds of the two-dimensional quantum Ising model,
whose Hamiltonian is

HI2d(h) = −
∑
i

(
σz
i−1̂σ

z
i + σz

i−2̂σ
z
i

)
− h

∑
i

σxi , (S27)

where i runs over the sites of a suitable lattice, and to
which we now construct a duality transformation ΦGR.
In order to do so, we define the dual lattice of the model
(S10) by identifying a site i of the dual lattice with the
plaquette � having the site x in the lower-left corner.
Then, we set:

ΦGR

(
σz(x,1̂)

)
= σz

i−2̂σ
z
i ,

ΦGR

(
σz(x,2̂)

)
= σz

i−1̂σ
z
i ,

ΦGR(U�) = σxi .

(S28)

These equations are expressing the fact that physical
states of the gauge model can be described entirely by the
magnetic states of the plaquettes and that, in a Abelian
gauge theory, the local gauge constraints impose the state
of electric field on a given link to be the result of the dif-
ference between the adjacent plaquettes, i.e. to describe
the domain wall between the plaquettes. Finally, mak-
ing use of some simple algebra one can show that the
Hamiltonian (S10) for N = 2 is mapped into the two-
dimensional Ising model with h = 1/λ

ΦGR (HZ2(λ)) = λHI2d(1/λ) (S29)

and that Φ(Gr) = 1.
These considerations can be easily generalized to the

Hamiltonian with the ZN symmetry, which is mapped
onto an N -clock model [47].

III. DUALITY BETWEEN LADDER LGT AND
CLOCK MODELS

In this section we show how to construct a mapping
of the ZN ladder LGT onto a N -clock model on a chain
with a transversal field and a longitudinal field, the latter
depending on the topological sector of the ladder LGT.

We start from the Hamiltonian (S10) written for a lad-
der geometry:

Hlad(λ) = −
∑
i

[
Ui + λ

(
V ↑i + V ↓i + V 0

i

)
+ h.c.

]
,

(S30)
where we adopted the notation of the main text for the
ladder.

dual 2–clock chain

Z2 LGT, sector n = 0

Z2 LGT, sector n = 1

|Ω(0,0)⟩

|Ω(1,0)⟩

FIG. S4. Duality between the states of a 2–chain and the
states of a Z2 ladder LGT in the different sectors (0, 0) (n = 0,
no non-contractible electric loop) and (1, 0) (n = 1, one non-
contractible loop around the ladder). In the sector (0, 0) it
is evident that all the physical states contain closed electric
loops. On the other hand, in the sector (1, 0) the physical
states are all the possible deformations of the electric string
that goes around the ladder.

The duality of the previous section for two-dimensional
gauge theories cannot be straightforwardly applied be-
cause here the links `0 have a different role when com-
pared with the links `↑ and `↓, only the former be-
ing domain walls between two plaquettes. Also, the
electric operators V ↓/V ↑ on the top/bottom links `↑/`↓
have to be treated separately because they have differ-
ent commutation relations with the plaquette operators
Ui ≡ U↓i U0

i+1 (U↑i )† (U0
i )†:

UiV
↓
i = ωV ↓i Ui, UiV

↑
i = ω−1V ↑i Ui. (S31)

Moreover, on a ladder the local Gauss operators gets
modified due to the fact that only three-legged vertices
exist. They read as: The Gauss operators on the top and
bottom vertices on the ladder become respectively

G↑i = V ↑i (V ↑i−1)†(V 0
i )†, G↓i = V ↓i V

0
i (V ↓i−1)†. (S32)

The duality transformation is defined through the fol-
lowing steps. First, the electric field on a vertical link `0
is mapped to Z†i−1Zi, as it is the result of the difference of
the magnetic states of the two adjacent plaquettes. This
can be readily verified, since from the definition of the
plaquette operator Ui we get

V 0
i Ui = ω−1UiV

0
i , V 0

i Ui−1 = ωUi−1V
0
i ,

therefore the maps

Ui 7→ Xi, V 0
i 7→ Z†i Zi−1, (S33)

conserve the commutation relations of Ui and V 0
i . Notice

that, since from (S32) we have∏
i

G↓i |ψphys〉 =
∏
i

V 0
i |ψphys〉 = |ψphys〉 , (S34)
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we expect that after the duality, the product of all V 0
i is

mapped to the identity, as it is from (S33). This works
as a sanity check for the duality map.

Second, we consider V ↑ and V ↓, that commute with
V 0 while satisfy relations (S31) with respect to Ui. This
allows us to assume:

V ↓i 7→ c↓iZi, V ↑i 7→ c↑iZ
†
i , (S35)

where c↓i and c↑i are complex numbers, with |c↓i | = |c
↑
i | =

1 to guarantee unitarity. To further constraint the value
of these coefficients, we can impose that the Gauss con-
straints (S32) has to become the identity: G↑i 7→ 1 and
G↓i 7→ 1 for all i. Since:

G↑i 7→ (c↑iZ
†
i )(c↑i−1Z

†
i−1)(Z†i Zi−1)† = c↑i (c

↑
i−1)∗,

G↓i 7→ (c↓iZ
†
i )(Z†i Zi−1)(c↓i−1Z

†
i−1) = c↓i (c

↓
i−1)∗

(S36)

we easily find that [48]:

c↓i = c↓, c↑i = c↑, ∀i. (S37)

Finally, we notice that superselection sectors are identi-
fied by the eigenvalue of the operator S2 in (S13), which
in the ladder geometry becomes

S2 = V ↑i0V
↓
i0

(S38)

for any fixed i0, whose eigenvalue are simply ωk, for k =
0, . . . , N−1. Therefore using the mapping (S35) on (S38)
in the sector with eigenvalue ωk, we get

S2 7−→ (c↑Z†i )(c↓Zi) = c↑c↓ = ωk. (S39)

This allows us to fix these coefficients as follows:

c↑ = 1, c↓ = ωk. (S40)

In summary, the duality mapping for the topological
sector ωk of the ZN LGT on a ladder reads as:

Ui 7−→ Xi, V 0
i 7−→ Z†i−1Zi,

V ↑i 7−→ Z†i , V ↓i 7−→ ωkZi.
(S41)

The transformed Hamiltonian is:

Hlad(λ) 7−→ λHN (λ−1) (S42)

where

HN (λ−1) = −
∑
i

(
Z†i−1Zi + 1

λ
Xi + (1 + ωk)Zi + h.c.

)
(S43)

i.e. a clock model with both transversal and longitudinal
fields, where the value of the latter carries the informa-
tion of the superselection sector.

sector (0, 0) vacuum |Ω(0,0)⟩

sector (1, 0) vacuum |Ω(1,0)⟩

|0⟩
|1⟩

W 1

FIG. S5. The different “Fock vacua” |Ω(0,0)〉 and |Ω(1,0)〉 of
the Z2 ladder LGT. The latter can be obtained from the for-
mer by applying the Wilson loop operator W1. The states |0〉
and |1〉 refer to the eigenstates of the electric field operator
V , which is just σz in the Z2 model.

IV. IMPLEMENTATION OF THE GAUSS LAW

When considering a LGT, one would like to work
within the physical subspace, which is obtained by im-
posing Gauss law at every site. A “brute-force” method,
in which one generates all the possible states and then
filters out all the states that violate Gauss law, is clearly
not efficient, even for moderately small lattices. To better
exemplify this, consider a Z2 theory on a L×L periodic
lattice, which have L2 sites and 2L2 links, and only 2L2

physical states. There are therefore 22L2 possible states
and for each one up to L2 checks (one per site) has to be
performed. As a result, the construction of the physical
Hilbert space involves O(L222L2) operations in a search
space of 22L2 objects for finding only 2L2 elements. In
this work, we exploit the gauge-reducing duality map de-
scribed in Sec. II and III to devise an algorithmic proce-
dure that generates physical configurations starting from
the states of the dual clock model. This is not a search
or pattern-matching algorithm and gives a major speedup
with respect to the brute-force method.

Given a ZN LGT on a lattice of size L×L, we consider
the dual N -clock model on a similar lattice with A = L2

sites. A basis for the Hilbert space of the clock-model
is the set of states |{si}〉 ≡ |s0s1 · · · sA−1〉, with si =
0, . . . , N − 1. The corresponding gauge-invariant state in
each superselection sector H(n,m)

phys of the Hilbert space of
the dual LGT model is given by:

|{si}〉 7−→
A−1∏
i=0

Usii |Ω(n,m)〉 , (S44)

where Ui is the plaquette operator on the i-th plaquette
and |Ω(m,n)〉 is the “Fock vacuum” of the H(n,m)

phys sub-
space. Moreover, the “Fock vacuums” |Ω(n,m)〉 can be
obtained easily, thanks to (S17):

|Ω(n,m)〉 = (W 1)n(W 2)m |Ω(0,0)〉 , (S45)
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where |Ω(0,0)〉 is the vacuum in the (0, 0)-sector, i.e. the
state |000 · · · 0〉. Fig. S4 and S5 show some examples.

Let us quantify the obtained speedup with this
method. In the case of a Z2 theory on a square lattice
L×L there are 2L2 possible clock configurations. For each
configuration, there are at most L2 magnetic fluxes to
apply. This translates into O(L22L2) operations: notice
that the exponent does not contains the factor 2 which
is present in the “brute-force” method, thus reducing the
number of operations by an order of O(2L2).

This procedure is easily generalizable for any ZN .

V. DISTRIBUTION OF THE AMPLITUDES IN
THE GROUND STATE

In the N = 2 case, we further differentiate the phase
diagrams of the two sectors by looking at the ground state
amplitudes distribution, for λ < 1 and λ > 1. Obviously,
the ground state can be written as a superposition of the
gauge invariant states of Hphys in the given sector

|Ψg.s.〉 =
∑
n

cn |n〉 . (S46)

The basis |n〉 and the amplitudes cn are sorted in a de-
creasing order with respect to the modulus of the latter.
The first state of the list, with amplitude c1, is always the
Fock vacua |Ω〉 of the sector, hence we consider the distri-
bution of the ratios |cn/c1|, which are plotted in Fig. S7–
S6 for λ = 0.1 and λ = 1.5, respectively. The most in-
teresting one is at λ = 0.1, where the difference between
the deconfined phase in the sector (1, 0) and the confined
one in the sector (0, 0) can be seen. In particular, in the
deconfined phase the ground state is a superposition of
deformations of the Fock vacuum, i.e the non-contractible
electric string, which can be thought as a kink conden-
sate [34] (or as a paramagnetic phase), where each kink
corresponds to a deformation of the string. Meanwhile,
for λ > 1, where we have confinement in both sectors,
the ground state is essentially a product state, akin to
a ferromagnetic state. This is explained in Fig. S7 and
Fig. S6.

Z2 g.s. amplitudes distribution, λ = 1.5

0.0

0.2

0.4

0.6

0.8

1.0 sector (0, 0)

|c n
/
c 1

|

0 50 100 150 200
0.0

0.2

0.4

0.6

0.8

1.0 sector (1, 0)

n

|c n
/
c 1

|

FIG. S6. Z2 ground state amplitude distribution for λ = 1.5
of the first 200 states and with lattice size 12 × 2. For both
sectors (0, 0) (top) and (1, 0) (bottom) we are in a confined
phase, which corresponds to a ferromagnetic phase in the Ising
chain. Here we see a polarized state where the domain walls
are suppressed and the ground state is essentially a product
state.
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Z2 g.s. amplitudes distribution, λ = 0.1
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...

FIG. S7. Z2 ground state amplitude distribution for λ = 0.1
of the first 200 states and with lattice size 12 × 2. Top: dis-
tribution of the ratios |cn/c1| for the sector (0, 0) (see (S46)).
We see that the heaviest states that enter the ground state,
apart from the vacuum that sets the scale, are made of small
electric loops, typical of a confined phase. Bottom: the same
distribution of ratios for the sector (1, 0). We see that the
heaviest states are made of bigger and bigger deformations of
the electric string that goes around the ladder. This happens
because the energy contributions depend only on the domain
walls between two plaquettes with different flux content. This
behaviour is similar to the so-called kink condensation in spin
chains [34], where the disordered state can be expressed as
a superposition of all possible configuration of kinks (i.e. do-
main walls between two differently ordered regions). In the
language of the duality, this deconfined phase then maps to
the paramagnetic phase of the quantum Ising model with only
transverse field.
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