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Abstract
We perform a reduction from three to two spatial dimensions of the physics of a
spin- 12 fermion coupled to the electromagnetic (EM) field, by applying Hadam-
ard’s method of descent. We consider first the free case, in which motion is
determined by the Dirac equation, and then the coupling with a dynamical EM
field, governed by the Dirac–Maxwell equations. We find that invariance along
one spatial direction splits the free Dirac equation in two decoupled theories.
On the other hand, a dimensional reduction in the presence of an EM field
provides a more complicated theory in 2+ 1 dimensions, in which the method
of decent is extended by using the covariant derivative. Equations simplify, but
decoupling between different physical sectors occurs only if specific classes of
solutions are considered.
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1. Introduction

While the most natural setting of a physical theory in spacetime is a (3+ 1)-dimensional man-
ifold, there is no obstruction, in principle, to formulating self-consistent theories in a higher-
or lower-dimensional manifold [1, 2]. From a strictly physical point of view, these theories can
provide a description of phenomena occurring in presence of an effective dimensional reduc-
tion, or, on the other hand, encode for convenience a theory in 3+ 1 dimensions into a larger
spacetime.

Many partial differential equations of physics can be generalized to arbitrary spatial dimen-
sions: this is notably the case for all problems where the Laplacian is the relevant differential
operator acting on the spatial variables. In these cases, one can investigate how the solutions
of equations appearing in the same form are affected by dimensionality, and possibly explore
those properties that are peculiar to specific dimensions, 3+ 1 in particular. A paramount
example is the wave equation: around 1900, Hadamard found out qualitative differences for the
propagation of a localized perturbation in odd and larger than one spatial dimensions, where
the perturbation concentrates around the wavefront, and even dimensions, characterized by the
presence of a trailing edge following the wavefront [3–7].

Apart from fundamental reasons, the interest in low-dimensional theories is twofold.
On one hand, they are of tantamount importance in the formulation of quantized field
theories [8–13], on the other hand, the technological developments of the last few years have
enabled us to engineer and control truly low-dimensional systems, yielding some fascinat-
ing dimension-dependent features [14–25]. It is thus worth studying whether self-consistent
low-dimensional theories can be obtained starting from a more familiar (3+ 1)-dimensional
one.

There are two possible approaches to dimensional reduction. The first and most common
one consists in formulating a lower dimensional version of the theory in 3+ 1 dimensions,
characterized by the same ab initio properties of the starting point, as long as they are allowed
by the new dimensionality [26–32]. An alternative approach is represented by the method of
descent. This tool was originally formulated by Hadamard to solve several evolution problems
of classical physics in a generic number of spatial dimensions: according to his own words, ‘it
consists in noticing that he who can do more can do less’ [3]. The descent method represented
the key to identify the aforementioned difference in the behaviour of wave equation solutions
for even and odd spatial dimensions.

While the descent method was conceived as a tool for solving equations, the underlying
idea can be used in the reverse direction to perform the dimensional reduction of a given
physical theory. Actually, a low-dimensional model can be considered as an instance of the
theory where all the relevant quantities are uniform along one or more spatial directions. The
low-dimensional equations of motion then follow directly from those in 3+ 1 dimensions, by
imposing such invariance. Reasonably enough, dimensional reduction by descent should yield
a reduced version of the original 3+ 1 theory among its products. However, the application of
the descent method to electromagnetism [33] shows us that this is not the whole story: besides
the expected theory, other independent theories in the considered reduced dimensionality can
emerge, sometimes with strikingly different physical properties.

Following this line of research, in this work we shall apply the descent method to the
equations of motion of a charged spin- 12 particle. We will start from the free Dirac theory, and
then extend the results to the case of the minimal coupling with the electromagnetic (EM) field.
After recalling, in section 2, relevant notions about the Dirac equation in 3+ 1 dimensions,
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we shall tackle in section 3 the problem of dimensional reduction of the free Dirac equation;
we will show that the method of descent provides two independent sectors, governed by non-
interacting Dirac equation in 2+ 1 dimensions. Then, in section 4, after briefly recalling the
results obtained for the free EM field, we shall apply the same procedure to the coupled Dirac–
Maxwell equations. We will observe that it is not trivial, in the case of interacting fields, to
obtain a decoupled 2+ 1 version of the Dirac theory by simply requiring invariance along
one direction. The usual formulation of QED in 2+ 1 dimensions emerges only by consid-
ering specific classes of solutions after dimensional reduction. Our analysis will involve a
nontrivial extension of Hadamard’s descent method, with the introduction of the covariant
derivative.

2. Preliminaries

The starting manifold of our analysis is the familiar (3+ 1)-dimensional Minkowski space-
time with metric tensor (ηµν) = diag(+1,−1,−1,−1). Unless otherwise specified, Einstein
summation convention is understood. In order to clearly distinguish between a (3+ 1)- and a
(2+ 1)-dimensional context, three different kinds of indices will often be used: as a common
practice, Greek indicesµ,ν,ρ, taking values in {0,1,2,3}, will refer to the (3+ 1)-dimensional
coordinates, and Latin indices i, j,k, with values in {1,2,3}, to its spatial coordinates. In addi-
tion, Latin indices a,b,c, with values in {0,1,2}, will be reserved for the (2+ 1)-dimensional
coordinates. This convention applies to free and contracted indices. Natural units will be adop-
ted, and EM units will be rationalized.

2.1. Dirac equation in 3+ 1 dimensions

In a (3+ 1)-dimensional spacetime, the Dirac Lagrangian, describing a free spin- 12particle of
mass m, reads

L=Ψ(iγµ∂µ −mI4)Ψ. (1)

Here, Ψ=Ψ(x) is a four-component wavefunction, often called Dirac spinor or bispinor, I4
is the 4× 4 identity matrix (that will be kept implicit in most of the equations henceforth),
(γµ)µ=0,1,2,3 is a quadruple of 4× 4 matrices, usually referred to as the gamma matrices,
satisfying the anticommutation property

{γµ,γν}= 2ηµνI4, (2)

and Ψ=Ψ†γ0 is the Dirac adjoint spinor. By requiring that

γµ† = γ0γµγ0, (3)

one gets that γ0 is Hermitian (hence Ψ= (γ0Ψ)†), and the γi’s are anti-Hermitian, and the
action associated to the Lagrangian L is real-valued. It is also useful to introduce a fifth
matrix

γ5 = iγ0γ1γ2γ3, (4)

which is Hermitian, involutive, and anticommuting with all the γµ’s. The matrices I4, (γµ),
(γµγν)µ<ν , (γ5γµ), and γ5 form a basis of the space of 4× 4 complex matrices [34]. The anti-
commutation relations (2) have the following immediate consequences: the gamma matrices
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are traceless, γ0 being involutive, and each γi anti-involutive (therefore, the condition (3) is
equivalent to assuming the gamma matrices to be unitary).

The stationary points of the action corresponding to theDirac Lagrangian (1) are determined
by the Dirac equation [35, 36]

(iγµ∂µ −mI4)Ψ = 0. (5)

The four-component differential operator (iγµ∂µ −mI4) applied to the Dirac spinor squares
to the Klein–Gordon operator, in the following sense:

(iγµ∂µ −mI4)
† (iγµ∂µ −mI4) =

(
∂µ∂

µ +m2
)
I4. (6)

The matrices Sµν = i
4 [γ

µ,γν ] generate the ( 12 ,0)⊕ (0, 12 ) representation of the restricted
Lorentz group. In particular, by introducing the six Hermitian matrices

Σi = i
2ϵ

ijkγjγk, αi = γ0γi, (7)

a proper rotation is represented by exp(− i
2θ ·Σ), and a boost by exp( 12η ·α). The Noether

current

( jµ) =
(
ΨγµΨ

)
= (Ψ†Ψ,Ψ†αΨ), (8)

related to the U(1) symmetryΨ→ eiθΨ of the Lagrangian (1), is manifestly covariant, behav-
ing as a vector under restricted Lorentz transformations, and can be interpreted as a probability
density four-current.

Distinct families of matrices satisfying equation (2) correspond to different representations
of the Dirac spinors and the Dirac algebra, all of them being linked via unitary transformations
U ∈ U(4),

Ψ→Ψ ′ = UΨ, γµ → γ ′µ = UγµU†, (9)

preserving both the anticommutation relations (2) (as a more general similarity transforma-
tion would do) and the conditions (3) [34]. In the following, different representations will be
labelled by specific labels on the spinor and the gamma matrices. Dirac’s original choice,

γ0
D =

(
I2 0
0 −I2

)
, γiD =

(
0 σi

−σi 0

)
, ΨD =

(
ϕ
χ

)
, (10)

where

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
(11)

are the Pauli matrices, is known as the standard orDirac representation. In this representation,
the generators (7) take the simple forms

ΣD =

(
σ 0
0 σ

)
, αD =

(
0 σ
σ 0

)
. (12)

In particular, it is worth noticing that the spin operator along the z direction, Σ3
D, is diagonal

in the Dirac representation.

2.2. Dirac equation in arbitrary spatial dimensions

The anticommutation relations (2) can be imposed in a Minkowski spacetime of arbitrary spa-
tial dimensionality n, starting from n+ 1 square matrices (ΓA)0⩽A⩽n, of order N= 2⌊(n+1)/2⌋

(with ⌊x⌋ denoting the integer part of x), satisfying the anticommutation algebra
{
ΓA,ΓB

}
=

4
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2ηABIN [34, 37], with (ηAB) = diag(+1,−1, . . . ,−1), and IN being the N×N identity mat-
rix. Therefore, the free Dirac equation can be generalized to an arbitrary number of spatial
dimensions, a feature essentially noticed from the beginning by Dirac himself [38]. A ‘nat-
ural’ notion of an (n+ 1)-dimensional Dirac theory can be achieved by following the same
pattern as in section 2.1. Such a theory will be formulated in terms of N-dimensional objects,
with (iΓA∂A−mIN)†(iΓA∂A−mIN) equaling the Klein–Gordon operator in n+ 1 dimensions.

Here, we shall focus on the case of 2 spatial dimensions, so the triple of 2× 2 gamma
matrices (Γa) will satisfy{

Γa,Γb
}
= 2ηabI2, Γa† = Γ0ΓaΓ0. (13)

The corresponding Dirac Lagrangian ψ (iΓa∂a−mI2)ψ, with ψ a two-component function of
three variables and ψ = ψ†Γ0, yields the Euler–Lagrange equation

(iΓa∂a−mI2)ψ = 0, (14)

which will be referred to as the (2+ 1)-dimensional Dirac equation. One of the pos-
sible choices of (2+ 1)-dimensional gamma matrices in 2+ 1 dimensions is represented by
(σ3, iσ2,−iσ1) [36].

3. Dimensional reduction of the free Dirac theory

We will perform the descent on the Dirac equation from 3 to 2 spatial dimensions along the
z coordinate, but any other direction would lead to analogous results. We expect a sensible
(2+ 1)-dimensional free Dirac theory to be covariant with respect to the (2+ 1)-dimensional
Lorentz groupO(1,2) of the transformations that do notmix zwith other spacetime coordinates

Λ=

(
L

Q

)
, (15)

with L ∈ O(1,2), andQ ∈ O(1) = {+1,−1}. In a (2+ 1)-dimensional context, attributes such
as ‘covariant’, ‘vector’, ‘scalar’ will always be referred to this group or one of its subgroups.

Therefore, we specialize the Dirac differential problem into a z-independent one by impos-
ing the descent condition

∂3Ψ= 0, (16)

which is both representation-independent, and covariant. We end up with the ‘reduced Dirac
equation’

(iγa∂a−mI4)Ψ = 0, (17)

that can be regarded as the Euler–Lagrange equation of the ‘reduced Lagrangian’

L̃=Ψ(iγa∂a−mI4)Ψ. (18)

As we will show in the following, equation (17) is equivalent to the pair of uncoupled
equations: (

iγa+∂a−mI4
)
Ψ+ = 0, (19)(

iγa−∂a−mI4
)
Ψ− = 0, (20)

where (γa+)0⩽a⩽2 and (γa−)0⩽a⩽2 are families of 4× 4 matrices satisfying{
γa±,γ

b
±
}
= 2ηabP±, γa±P± = γa± = P±γ

a
±, (21)
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with P+ and P− two complementary orthogonal projections of rank 2, thus satisfying

P+P− = 0, P2
± = P†

± = P±, P+ +P− = I4. (22)

Moreover, equations (19) and (20) turn out to be (2+ 1)-dimensional Dirac equations, that
can be explicitly put in the form of equation (14) in a suitable basis, such that P+ = I2 ⊕ 02
and P− = 02 ⊕ I2. Notice that, despite the formal analogy between the equations, dimensional
reduction generates two independent Dirac theories in (2+1) dimensions. The derivation of
two independent dimensionally-reduced models by descent was already found in the EM case,
as we shall outline in the following. There, however, the theories are also formally different.

In section 3.1, we shall first discuss the problem in the standard representation (which,
quite by chance, turns out to be particularly advantageous to perform the descent along z), and
then formulate in section 3.2 a general proof of the above statement that is independent of the
representation. A discussion of these results is finally given in section 3.3.

3.1. Descent in the standard representation

By conveniently labelling the spinor components in the standard representation as

ΨD =

(
ϕ
χ

)
=


ϕ↑
ϕ↓
χ↓
χ↑

 , (23)

the Dirac equation (5) has the matrix form
i∂0 −m 0 i∂3 i∂1 + ∂2

0 i∂0 −m i∂1 − ∂2 −i∂3
−i∂3 −i∂1 − ∂2 −i∂0 −m 0

−i∂1 + ∂2 i∂3 0 −i∂0 −m



ϕ↑
ϕ↓
χ↓
χ↑

= 0, (24)

equivalent to the system of four equations
(i∂0 −m)ϕ↑ + i∂3χ↓ +(i∂1 + ∂2)χ↑ = 0,

(i∂0 −m)ϕ↓ +(i∂1 − ∂2)χ↓ − i∂3χ↑ = 0,

(i∂0 +m)χ↓ + i∂3ϕ↑ +(i∂1 + ∂2)ϕ↓ = 0,

(i∂0 +m)χ↑ +(i∂1 − ∂2)ϕ↑ − i∂3ϕ↓ = 0.

(25)

Notice that all the coupling terms between ↑ and ↓ components are in the form of a derivative
∂3 with respect to z.

Consequently, the condition ∂3ΨD = 0 breaks all and only the couplings between the ↑ and
↓ components, so that the Dirac equation takes the matrix form

i∂0 −m 0 0 i∂1 + ∂2

0 i∂0 −m i∂1 − ∂2 0
0 −i∂1 − ∂2 −i∂0 −m 0

− i∂1 + ∂2 0 0 i∂0 −m



ϕ↑

ϕ↓
χ↓

χ↑

= 0, (26)

and the wavefunction is partitioned into two independently evolving sectors, respectively
spanned by the ↑ components, whose dynamics is determined by{

(+i∂0 −m)ϕ↑ +(+i∂1 + ∂2)χ↑ = 0,

(−i∂0 −m)χ↑ +(−i∂1 + ∂2)ϕ↑ = 0,
(27)

6
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and the ↓ components, obeying the equations{
(+i∂0 −m)ϕ↓ +(+i∂1 − ∂2)χ↓ = 0,

(−i∂0 −m)χ↓ +(−i∂1 − ∂2)ϕ↓ = 0.
(28)

The only difference between the ↑ and ↓ equations consists in the sign before the ∂2 terms,
which entails that the subsystems (27) and (28) are transformed into each other by a reflection
of the y-axis (t,x,y,z)→ (t,x,−y,z).

At this point, by observing that both the triples of 2× 2 matrices(
Γa↑
)
= (σ3, iσ2,−iσ1),

(
Γa↓
)
= (σ3, iσ2,+iσ1), (29)

satisfy the anticommutation relations (13), and by introducing the two-components wavefunc-
tions

ψ↑ =

(
ϕ↑
χ↑

)
, ψ↓ =

(
ϕ↓
χ↓

)
, (30)

the subsystems (27) and (28) can be rewritten as(
iΓa↑∂a−mI2

)
ψ↑ = 0, (31)(

iΓa↓∂a−mI2
)
ψ↓ = 0, (32)

namely, as a pair of (2+ 1)-dimensional Dirac equations.
The partition of the spinor in equation (26) can be easily interpreted by looking at the

generators of SO+(1,2), which are proportional to the matrices

Σ3
D =


1

−1
1

−1

 , α1
D =


i

i
i

i

 , α2
D =


1

−1
1

− 1

 . (33)

Actually, the transformation generated by (Σ3
D,α

1
D,α

2
D) does not mix the ↑ and ↓ components:

our partition thus coincides with the decomposition of the spinor with respect to this group,
satisfying the expected (2+ 1)-dimensional covariance.

It is worth remarking that the pair (31) and (32) of uncoupled Dirac equations emerges
naturally in the low-energy description of graphene (see e.g. equation (19) of [23]), which
represents a prototypical example of (2+ 1)-dimensional Dirac matter.

3.2. Descent in a representation-independent approach

The calculations in the Dirac representation are facilitated by the fact that the generator Σ3,
representing the spin component along the descent direction z, is diagonal. Had we chosen a
different representation, or hadwe performed the descent in the same representation but along a
different direction, the resulting decoupling would have been less evident: of course we would
have ended with two independently evolving two-dimensional subspaces, but in general their
vectors would have been written in terms of linear combinations of the spinor components.
Therefore, it is worth reviewing the decoupling mechanism from a representation-independent
point of view.

We can say that a proper linear decoupling consists in the existence of a pair of projec-
tions on nontrivial complementary subspaces, namely two operators P± satisfying the proper-
ties (22), with the possible exception of Hermiticity, acting exclusively on the spinorial degrees
of freedom ofΨ, such that the projected wavefunctions P+Ψ and P−Ψ are mutually decoupled
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in the reduced Dirac equation (17). The latter can be decomposed, by means of the identity
resolution provided by P±, into the pair

P+(iγ
a∂a−m)P+Ψ+ iP+γ

aP−∂aΨ= 0, (34)

P−(iγ
a∂a−m)P−Ψ+ iP−γ

aP+∂aΨ= 0. (35)

A necessary and sufficient condition for P+Ψ and P−Ψ to be decoupled is the vanishing
of the coupling terms iP+γ

aP−∂aΨ and iP−γ
aP+∂aΨ. Considering the property P+P− =

P−P+ = 0 and the arbitrariness of the spinor derivatives, these conditions are equivalent to

[P±,γ
a] = 0 for a= 0,1,2. (36)

In order to determine the 4× 4 complex matrices P±, we decompose them in the form

P± = a0I+
∑
µ

bµγ
µ +

∑
µ<ν

cµνγ
µγν +

∑
µ

dµγ
µγ5 + a5γ

5, (37)

where we have temporarily dropped Einstein’s convention, yielding the commutators

1
2 [P±,γ

a] =
∑
µ̸=a

bµγ
µγa+ ηaa

(
−
∑
a<ν

caνγ
ν +

∑
µ<a

cµaγ
µ − daγ

5

)
− a5γ

aγ5. (38)

By imposing the commutation conditions (36), while letting the (2+ 1)-dimensional index a
take the values 0,1,2, all the coefficients but d3 must vanish, so P± = a0I+ d3γ3γ5. Finally,
by imposing the idempotence condition (22),

a0I+ d3γ
3γ5 =

(
a20 + d3

2) I+ 2a0d3γ
3γ5, (39)

we get a0 = 1/2 and d3 =±1/2, and the projections are finally obtained:

P± =
I± γ3γ5

2
. (40)

We are thus led to consider the matrix

κ3 = P+ −P− = γ3γ5 = iγ0γ1γ2 = γ0Σ3, (41)

which is traceless, because tr
(
γ3γ5

)
=−tr

(
γ5γ3

)
, as well as Hermitian and involutive, since

it is the product of the commuting Hermitian and involutive matrices γ0 and Σ3. Therefore, its
eigenvalues are 1 and−1, eachwithmultiplicity 2, corresponding to the orthogonal projections
P+ and P−, respectively. Moreover, by construction we have [γa,κ3] = 0.

Now, by setting

Ψ± = P±Ψ, γa± = P±γ
aP±, (42)

the following decompositions hold:

Ψ=Ψ+ +Ψ−, (43)

γa = γa+ + γa−, (44)

and the reduced equation (17) can be written as the pair of uncoupled equations(
iγa+∂a−mI4

)
Ψ+ = 0, (45)(

iγa−∂a−mI4
)
Ψ− = 0, (46)

where (γa±) are two sets of 4× 4 matrices satisfying

8
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{
γa±,γ

b
±
}
=
{
P±γ

aP±,P±γ
bP±

}
= 2ηabP±. (47)

At this point, we can show that equations (45) and (46) are (2+ 1)-dimensional Dirac
equations, in the following sense. First, we can always choose a representation where the pro-
jections are diagonalized in the form

P̂+ =

(
I2 0
0 0

)
, P̂− =

(
0 0
0 I2

)
. (48)

According to the decompositions (43) and (44), Ψ̂ and γ̂a—the expressions, in the chosen
representation, of the wavefunction and of the ath gamma matrix—have the block structure

γ̂a =

(
Γa+ 0
0 Γa−

)
, Ψ̂ =

(
ψ+

ψ−

)
. (49)

In this regard, notice that the existence of a projection commuting with each γa, in turn a
necessary and sufficient condition for the decoupling of the reduced Dirac equation, is also
equivalent to the simultaneous block-diagonalizability of the (γa).

Then the sets
(
Γa±
)

inherit their anticommutation relations from those of
(
γ̂a±
)

in
equation (47), and turn out to be (2+ 1)-dimensional gamma matrices. The decoupled
equations (45) and (46) are equivalent to(

iΓa+∂a−mI2
)
ψ+ = 0, (50)(

iΓa−∂a−mI2
)
ψ− = 0, (51)

which are in the form (14), hence (2+ 1)-dimensional Dirac equations, defined on the two-
dimensional images of P̂+ and P̂−, respectively.

3.3. Discussion of the results

3.3.1. Reconnecting the pictures. In order to check the consistency between the results of
the last two subsections, we write κ3 in the standard representation. Since

κ3
D = γ3

Dγ
5
D = diag(1,−1,−1,1), (52)

its eigenspaces corresponding to 1 or −1 are exactly the subspaces spanned by the ↑ and ↓
spinor components, respectively. Accordingly, equations (31) and (32) and equations (19) and
(20) are just different expressions (in terms of algebraic objects of different orders, 2 and 4,
respectively) of the same couple of (2+ 1)-dimensional Dirac equations.

3.3.2. Properties of the decoupling. First of all, we check that the decomposition underly-
ing our decoupling, as well as our reduced equations, are covariant with respect to the (2+ 1)-
dimensional Lorentz group (15). Indeed, let us recall that γ5 anticommutes with all the gamma
matrices, hence commuting with all the generators of the restricted Lorentz group. As a con-
sequence, we observe that κ3 is left invariant by the restricted Lorentz transformations of the
form (15) with Q=+1,

9
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D(Λ−1)κ3D(Λ) = D(Λ−1)γ3D(Λ)D(Λ−1)γ5D(Λ) = Λ3
µγ

µγ5 = γ3γ5 = κ3, (53)

with D denoting the ( 12 ,0)⊕ (0, 12 ) representation of the restricted Lorentz group.
The reduction of the original equation in a pair of decoupled (2+ 1)-dimensional Dirac

equations can also be interpreted at the level of Lagrangians as follows: the reduced Lag-
rangian (18) can be written, without any further assumption, as the sum of two independent
Lagrangians,

L̃=Ψ+

(
iγa+∂a−m

)
Ψ+ +Ψ−

(
iγa−∂a−m

)
Ψ− = L̃+ + L̃−, (54)

with equations (45) and (46) being their respective Euler–Lagrange equations.

3.3.3. ‘Block-diagonal’ representations. Let us try to decompose γ3 in a similar way as
equation (44). Its behaviour with respect to the projections P±,

γ3P± = P∓γ
3, (55)

yields the decomposition

γ3 = γ3
+,− + γ3

−,+, (56)

where we have set

γ3
±,∓ = P±γ

3P∓ = γ3P∓ = P±γ
3. (57)

The decompositions (44) and (56) of the gamma matrices extend to the vector current (8),
since by setting

ja± =Ψ†
±γ

0
±γ

a
±Ψ±, (58)

j3±,∓ =Ψ†
±γ

0
±γ

3
∓Ψ∓. (59)

We can accordingly write

ΨγaΨ= ja+ + ja−, (60)

Ψγ3Ψ= j3+,− + j3−,+. (61)

In matrix terms, equation (56) tells us that, in the representation (48), where each γa is block-
diagonal, γ3 has to be off-block-diagonal, specifically:

γ̂3 =

(
0 Γ3

+,−
Γ3
−,+ 0

)
. (62)

The decomposition, determined by the descent, of the free Dirac theory into two inde-
pendent models is thus clearly visualized in any representation such that the first three Dirac
matrices are block diagonal. The Dirac equation takes the form:iΓa+∂a−mI2 iΓ3

+,−∂3

iΓ3
−,+∂3 iΓa−∂a−mI2

ψ+

ψ−

= 0. (63)

10
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In this way, since the terms proportional to ∂3 are cancelled by the descent condition, the
reduced equation (17) can be recast in the block-diagonal formiΓc+∂c−mI2

iΓc−∂c−mI2

ψ+

ψ−

= 0, (64)

and the decoupling into two (2+ 1)-dimensional Dirac equation manifestly emerges.
The computations in section 3.1 can be used to single out a particular ‘block-diagonal rep-

resentation’, that can be defined through the unitary transformation relating it to the standard
representation. By permuting the standard components as

Ψ̂ = UΨD =


ϕ↑
χ↑
ϕ↓
χ↓

 , U=


1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0

 , (65)

the corresponding gamma matrices, γ̂µ = UγµDU
†, explicitly read

γ̂0 =

(
σ3 0
0 σ3

)
,

γ̂1 =

(
iσ2 0
0 iσ2

)
,

γ̂2 =

(
−iσ1 0
0 iσ1

)
,

γ̂3 =

(
0 σ1

−σ1 0

)
, (66)

and the resulting (2+ 1)-dimensional equations coincide with equations (31) and (32).
The algebraic background of this discussion as well as its generalization to arbitrary dimen-

sions will be the topic of future research.

3.3.4. Conserved κ3-charge. An interesting consequence of the descent is that the trans-
formation

Ψ→ eiθκ
3

Ψ (67)

becomes a symmetry of the reduced Lagrangian (18), with Noether current

jaκ3 =Ψγaκ3Ψ. (68)

We stress that the transformation (67) is not a symmetry of the Dirac Lagrangian (1), as κ3

does not commute (in fact, it anticommutes) with γ3:

[γ3,κ3] =−2γ5,
{
γ3,κ3

}
= 0. (69)

To better understand the physical meaning of the symmetry (67), it is useful to evaluate the
Noether charge

Qκ3 =

ˆ
j0κ3 d2x=

ˆ (
|Ψ+|2 − |Ψ−|2

)
d2x, (70)

whose conservation implies that, after the descent, the current I+ = ∂0
´
|Ψ+|2d2x is always

balanced by I− = ∂0
´
|Ψ−|2d2x. The theory is split in two sectors with superselection charge

κ3 = P+ −P−.

11
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3.3.5. Analogy with the massless theory. We can draw a somewhat broad parallel between
the reduced Dirac theory and the massless case.Whenm= 0, the Dirac equation splits into two
uncoupled Weyl equations, a left- and a right-handed one, in terms of the left- and the right-
handed parts of the wavefunction, which are eigenvectors of γ5 corresponding to the eigen-
values 1 and −1 respectively. This decomposition has a restricted covariance, and is manifest
in the Weyl representation. Moreover, the chiral transformation Ψ→ eiθγ

5
Ψ is a symmetry of

the massless Dirac Lagrangian (1), associated to the axial currentΨγµγ5Ψ. The roles of mass,
chirality, and the Weyl representation for the massless case are played by the z-component
of the momentum, the superselection charge κ3, and any block-diagonal representation in the
reduced theory, respectively.

4. Dimensional reduction of the minimally coupled Dirac theory

4.1. Descent of the Maxwell equations

Let us recall the basics of EM theory in presence of non-dynamical sources. In the field for-
mulation, the Maxwell equations,{

ϵµνρσ∂νFρσ = 0, (71)
∂νFνµ = Jµ, (72)

are a system of eight first-order differential equations for the components of the EMfield tensor
(Fµν), with the source terms corresponding to the components of the four-current (Jµ):

(Fµν) =


0 −Ex −Ey −Ez
Ex 0 −Bz By
Ey Bz 0 −Bx
Ez −By Bx 0

 , (Jµ) =


ρ
Jx
Jy
Jz

 . (73)

In the potential formulation, the homogeneous equations (71) are equivalent to the existence
of a four-potential (Aµ) = (Φ,A), determining the field components via

Fµν = ∂µAν − ∂νAµ, (74)

and the inhomogeneous equation (72) are rewritten as a system of four second-order differen-
tial equations in the four-potential components,

∂ρ(∂
ρAµ − ∂µAρ) = Jµ, (75)

that can be obtained as the Euler–Lagrange equations of the EM Lagrangian

Lem =− 1
4FµνF

µν − JµA
µ = 1

2

(
E2 −B2)− ρΦ+ J ·A, (76)

which is invariant with respect to gauge transformations

Aµ(x)→ Aµ(x)− ∂µχ(x). (77)

The dimensional reduction of EM has been extensively discussed in [33]. The descent from
3 to 2 spatial dimensions of the Maxwell equations (71) and (72) is quite similar to the one of
the free Dirac equation of section 3: chosen z as the descent direction, Maxwell’s differential
problem is specialized into a z-independent one by imposing the conditions

∂3F
µν = 0, ∂3J

µ = 0, (78)

12
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which are covariant with respect to the O(1,2) group (15). As a consequence, the original
system splits up into two decoupled subsystems of four equations:{

ϵbcd∂bFcd = 0,

∂bFba = Ja,
(79)

{
ϵabc∂bFc

3 = 0,

∂bFb3 = J3,
(80)

and both the EMfield tensor and the four-current are partitioned into twomutually independent
sectors, according to the O(1,2) decomposition:

(Fµν) =


0 −Ex −Ey −Ez
Ex 0 −Bz By
Ey Bz 0 −Bx
Ez −By Bx 0

 ,(Jµ) =

ρ
Jx
Jy

Jz

 . (81)

As the two Dirac equations, these two subsystems describe independent EM worlds, each
evolving on its own. We label them according to the number of electric and magnetic compon-
ents involved:

• the ‘EEB’ equations (79) are written in terms of the field components (Ex,Ey,Bz), determin-
ing the tensor block (Fab), and of the sources (ρ,Jx,Jy), determining the vector block (Ja);

• the ‘BBE’ equations (80) involve the components (Bx,By,Ez), determining the vector block
(Fa3), and the source J3 = Jz.

This splitting is analogue to the one occurring in the description of the stationary EM phe-
nomena, obeying the two independent theories of electrostatics and magnetostatics: while
the descent (78) consists in assuming all the EM quantities to be uniform along a spa-
tial direction, the stationary equations are obtained by requiring uniformity along the time
direction.

Since the descent is performed on the equations of motion of the fields, the decoupling at the
level of the potentials is not as manifest as in the field formulation. The descent conditions (78)
actually do not imply ∂3Aµ = 0, and the relations in equation (75) specialize into{

∂a∂
aAb− ∂b∂aAa = Jb, (82)

∂a∂
aA3 + ∂3∂aAa = J3. (83)

The EEB subsystem translates into equation (82), which involves no z derivative term, and
determines a (2+ 1)-dimensional problem in terms of the (2+ 1)-dimensional vectors (Aa)
and (Ja) only, that is, of the components of the four-potential and of the four-current ‘trans-
versal to the descent direction’. The BBE subsystem translates into equation (83), involving
not only the components A3 and J3 ‘along the descent direction’, but also (Aa), via the term
∂3∂bAb, which is also the only surviving z-derivative. Therefore, while the components (Aa)
evolve on their own, the evolution of A3 is affected by the value of (Aa), as opposed to
what happens at the level of the fields, where (Fab) and (Fa3) evolve irrespectively of each
other.

In order to decouple the potential components into two independent theories, part of the
gauge freedom must be used to impose ∂3Aµ = 0. Then, (Fa3) is determined only by A3, and
equation (83) reduces to ∂a∂aA3 = J3, namely a (2+ 1)-dimensional wave equation for A3.

13
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This choice is analogous, in the context of stationary EM, to describing fields in terms of a time-
independent four-potential, decomposing into a scalar and purely electrostatic component, and
a vector and purely magnetostatic one.

4.2. Descent of the coupled Dirac–Maxwell equations

The Lagrangian associated with a Dirac fermion, of mass m and electric charge q, interacting
with an EM field, is the sum of the free EM Lagrangian and a modified Dirac Lagrangian (1)
in which, according to the minimal coupling prescription, pµ → pµ − qAµ, the ordinary deriv-
atives are replaced by the covariant ones:

∂µ → Dµ = ∂µ + iqAµ. (84)

This requirement promotes the U(1) invariance of the free Dirac theory to a gauge symmetry:

Ψ(x)→ eiqχ(x)Ψ(x), Aµ(x)→ Aµ(x)− ∂µχ(x). (85)

Therefore, the resulting Lagrangian is the sum of the free Lagrangians (1) and (76), with an
additional interaction term coupling the EM four-potential and the fermionic current (8):

Lmc =− 1
4FµνF

µν +Ψ(iγµ∂µ −m)Ψ− qAµΨγ
µΨ. (86)

The corresponding Euler–Lagrange equations, which will be referred to as the Dirac–Maxwell
equations, read{

(iγµ∂µ −m)Ψ = qAµγ
µΨ, (87)

∂µ∂
µAν − ∂ν∂µAµ = qΨγνΨ. (88)

This is a system of four first-order and four second-order partial differential equations in the
four complex components of Ψ and the four real components of Aµ, coupled to each other.
Each equation has a nonlinear term of order zero, which has been written on the right-hand
side, to suggest its interpretation as a dynamical source. Equation (87) is a Dirac equation
minimally coupled to a dynamical EM field, whereas equation (88) represents the dynamics
of an EM field with a dynamical spinor current.

We are now going to discuss the dimensional reduction of the Dirac–Maxwell equations.
We require that the reduced theory retains gauge-covariance (at the level of the equations of
motion). In this regard, while the descent condition for the free EM theory, ∂3Fµν = 0, is
covariant, the one for the free Dirac theory, ∂3Ψ= 0, is not. We overcome this problem by
generalizing the latter to the gauge-covariant conditionD3Ψ= 0. As a consequence, the spinor
is constrained to the form

Ψ(t,x,y,z) = exp

(
iq
ˆ z

A3(t,x,y, ζ)dζ

)
Φ(t,x,y), (89)

with Φ any four-component z-independent function. Notice that a dependence of Ψ on z is
still allowed, as long as it is limited to a phase factor. This implies that any bilinear quantity
Ψ†MΨ, with M a 4× 4 matrix, is z-independent:

∂3
(
Ψ†MΨ

)
= 0. (90)

In particular, the spinor current is z-independent, consistently with the descent condition (78)
for an external four-current.
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Summing up, we specialize the Dirac–Maxwell differential problem to a z-independent one
by imposing the representation-independent, Lorentz-covariant, and gauge-covariant descent
conditions:

D3Ψ= 0, ∂3 (∂
µAν − ∂νAµ) = 0. (91)

Observe that the first equation represents a generalization of Hadamard’s method. Each condi-
tion pertains to just one of the Dirac–Maxwell equations (87) and (88), hence their respective
descents will be discussed one at a time.

The Dirac equation (87) is reduced to the equation

(iγaDa−mI4)Ψ = 0, (92)

which differs from the free equation (17) only by the replacement of the partial derivatives
with the covariant ones: the fermion is now minimally coupled to the dynamical vector poten-
tial (Aa), whose components appear in the covariant derivatives Da, namely to the (2+ 1)-
dimensional EEB model. Using the resolution of identity provided by the projections (40),
equation (92) can be rewritten as(

iγa+Da−mI4
)
Ψ+ = 0, (93)

(
iγa−Da−mI4

)
Ψ− = 0, (94)

which generalizes the pair (45) and (46) of (2+ 1)-dimensional free Dirac equations: the two
fermionic sectors in 2+ 1 dimensions are nowminimally coupled to the same low-dimensional
EM field.

The Maxwell equation (88) are reduced to

∂aF
ab = qΨγbΨ, (95)

∂aF
a3 = qΨγ3Ψ, (96)

which are respectively equal to equation (82), for the EEB model, and equation (83), for the
BBE model, except that the external (2+ 1)-dimensional vector and scalar currents (Ja) and
J3 have been replaced respectively by the (2+ 1)-dimensional blocks (qΨγaΨ) and qΨγ3Ψ
of the dynamical spinor current.

Summarizing, the reduced Dirac–Maxwell equations can be finally written as
(iγa∂a−mI4)Ψ = qAaγaΨ,

∂a(∂
aAb− ∂bAa) = qΨγbΨ,

∂a(∂
aA3 − ∂3Aa) = qΨγ3Ψ.

(97)

in terms of Ψ, (Aa) and A3, or, equivalently, by using the decompositions (42),
(
iγa+∂a−mI4

)
Ψ+ = qAaγa+Ψ+,(

iγa−∂a−mI4
)
Ψ− = qAaγa−Ψ−,

∂a(∂
aAb− ∂bAa) = Jb+ + Jb−,

∂a(∂
aA3 − ∂3Aa) = J3+,− + J3−,+.

(98)

Furthermore, by a block-diagonal choice (49) for the gamma matrices, the Dirac–Maxwell
equations can be recast in the form
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(
iΓa+∂a−mI2

)
ψ+ = qAaΓa+ψ+, (99)(

iΓa−∂a−mI2
)
ψ− = qAaΓa−ψ−, (100)

∂a∂
aAb− ∂b∂aAa = Jb+ + Jb−, (101)

∂a∂
aA3 + ∂3∂aAa = J3+,− + J3−,+. (102)

in which the number of independent components is explicit.

4.3. Discussion of the results

As opposed to what happens in the free theories, the Dirac–Maxwell equations do not split
by descent into two separate, non-interacting sectors, as the variables are directly or indirectly
coupled to each other. In particular, Ψ+ and Ψ− are mutually coupled through the EM field.
The decoupling is only partial, with equations (99)–(101) forming a subsystem in which only
Ψ and (Aa) explicitly appear, although A3 is still coupled to (Aa) via the term ∂3∂aAa (which
retains a residual z-dependence allowed by gauge invariance), and to Ψ via J3. However, one
can identify two classes of solutions in which decoupling effectively occurs throughout the
evolution:

(a) The solutions in which Ψ− identically vanishes, and the remaining fields consistently
evolve according to

(
iγa+Da−mI4

)
Ψ+ = 0,

∂aFab = Jb+,

∂aFa3 = 0.

(103)

(b) The solutions in which Ψ+ identically vanishes, and the remaining fields consistently
evolve according to

(
iγa−Da−mI4

)
Ψ− = 0,

∂aFab = Jb−,

∂aFa3 = 0.

(104)

Notice that, in order to obtain the above classes of solutions, it is sufficient to impose the
initial conditions Ψ−(t= 0) = 0 and Ψ+(t= 0) = 0, respectively. We remind that the above
set of equations can be used to describe the physics of graphene interacting with an EM field
[23] (see comments on equations (31) and (32) in section 3.1).

Formally, both these theories describe a two-component spinor in 2+ 1 dimensions interact-
ing with an EEB theory, plus a non-interacting BBE sector which evolves freely. We remark
that this result provides a justification a posteriori of the traditional formulation of QED in
2+ 1 dimensions, in term of two-component spinors.

On the other hand, a solution with Fab identically vanishing would also entail, for q ̸= 0, an
identically vanishing spinor, since

∂aF
a0 = 0 ⇒ Ψ†Ψ= 0, (105)

leaving the free BBE sector as the only nontrivial theory.
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Figure 1. Relationship between descent and minimal coupling. The solid straight lines
represent the descent from a 3+ 1 theory to a 2+ 1 one, the solid wavy lines represent
the minimal coupling, whereas the dotted line represents the restriction of a theory to a
particular class of solutions.

All the results discussed in this work are schematically summarized in figure 1, where the
sectors D+ and D– respectively refer to the free (2+ 1)-dimensional Dirac equations (19)
and (20), whereas the EEB+D+ and EEB+D– denote the above decoupled theories obtained
when Ψ− = 0 and Ψ+ = 0, respectively.

5. Conclusions and outlook

We have shown that dimensional reduction through the descent method entails a splitting of
the Dirac theory for a free spin- 12 particle in a (3+ 1)-dimensional flat spacetime into two
noninteracting sectors in a (2+ 1)-dimensional spacetime. Each sector obeys an equation that
could also be obtained ab initio as a Dirac equation in a (2+ 1)-dimensional spacetime, when
defined as a formal ‘square root’ of the Klein–Gordon equation. In this sense, Dirac’s approach
and dimensional reduction prove to be mutually compatible.

We have subsequently applied the reduction procedure to a spin-particle minimally coupled
to an EMfield: while a complete splitting of the theory does not occur in such a case at the level
of equations, two particular classes of solutions exist in which some sectors evolve trivially.
In other words, the splitting occurs at the level of solutions. We emphasize that Hadamard’s
method has been extended by using the covariant derivative.

Interestingly, the existence of two (2+ 1)-dimensional Dirac equations after dimensional
reduction is not a mere academic curiosity, since an analogous result is obtained, although
under different physical conditions, in the low-energy description of the electronic properties
of graphene close to the Dirac points [23].
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We have shown that the dimensional reduction implies the emergence of a superselection
charge, which is the analogous of chirality in the massless case. As it is well-known, the chiral
symmetry of the (3+ 1)-dimensional massless Dirac Lagrangian is actually broken at the level
of quantum field theory, a phenomenon which is usually referred to as chiral anomaly [39, 40].
Therefore, an interesting open question is whether our newly found symmetry (67) is still
conserved in a corresponding (2+ 1)-dimensional quantum field theory.

Among the possible directions of future investigation, we mention the possibility of provid-
ing a coordinate-free description of the descent method in terms of exterior differential calcu-
lus and Hodge-⋆ operators. Here the reduction may be performed with respect to any closed
Lie subgroup of the Poincaré group. Such an extension can be carried on along the lines of
equation (5) of [41].

One can also conceive an extension beyond Minkowski space-time, by making use of the
Fock-Ivanenko connection, the vierbeins introduced by Ricci and Levi-Civita [41], and the
seminal work by Kahler [42]. Within such a formulation, the reduction procedure may be
carried on in a completely coordinate-free manner.
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