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The last years have seen a rapid development of applications of quantum computation to quantum
field theory. The first algorithms for quantum simulation of scattering have been proposed in the
context of scalar and fermionic theories, requiring thousands of logical qubits. These algorithms
are not suitable to simulate scattering of incoming bound states, as the initial state preparation
relies typically on adiabatically transforming wavepackets of the free theory into wavepackets of the
interacting theory. In this paper we present a strategy to excite wavepackets of the interacting theory
directly from the vacuum of the interacting theory, allowing for preparation of states of composite
particles. This is the first step towards quantum simulation of scattering of bound states. The
approach is based on the Haag-Ruelle scattering theory, which provides a way to construct creation
and annihilation operators of a theory in a full, nonperturbative framework. We provide a quantum
algorithm requiring a number of ancillary qubits that is logarithmic in the size of the wavepackets,
and with a success probability depending on the state being prepared. The gate complexity for a
single iteration of the circuit is equivalent to that of a time evolution for a fixed time.

I. INTRODUCTION

The successes of last years towards implementation of quantum algorithms on real platforms are creating a growing
expectation about the opportunities that quantum computation may open in different fields. One prominent area that
has been particularly fruitful in providing examples of the potential advantage offered by quantum computation is
high energy physics, especially for what concerns data analysis [1–8] and simulations of lattice quantum field theories
[9–34]. Such theories have been exploited for many decades as a tool to numerically investigate several aspects of
quantum field theory through the Euclidean path integral, which is a powerful tool in its range of applicability, but
does not cover the whole class of phenomena that require real-time evolution in order to be studied. The Hamiltonian
formulation in Minkowski spacetime is the natural framework for these problems, but is also hardly approachable
with classical computation. In the mentioned class of phenomena, and arguably in all the theory of fundamental
interactions, scattering events are of special interest, because they are almost the only probe we have to access those
regimes of physics where quantum field theory is necessary. This work is about state preparation for digital quantum
simulation of scattering.

The prospect of large-scale, fault-tolerant quantum computers, however far in the future, has already started to
change our approach to lattice field theory with the seminal papers [9, 10] by Jordan, Lee and Preskill. There, an
efficient quantum algorithm for simulation of scattering in the scalar theory φ4, requiring thousands of logical qubits,
is provided and analysed. The present work will contribute in this long-term perspective by making the first step
towards quantum simulation of scattering events with incoming composite particles. Preparation of bound states is an
essential task in order to ultimately perform simulations of important, real-life collider events such as proton-proton
scattering at the Large Hadron Collider.

Subsequent works of [9, 10] are [35–37], where the same problem is treated in different equivalent formulations such
as the wavelet basis or the multi-particle decomposition of the Hilbert space. A common feature of these works is
that they all rely on excited states of the associated free theory in order to prepare wavepackets of the interacting
theory. As an immediate consequence, these approaches can be used only for states of the interacting theory that can
be obtained smoothly (typically by an adiabatic transformation) by states of the free theory, which excludes the case
of bound states.

With the framework of [9, 10] in mind, in the present work we provide a general strategy to prepare single-particle
wavepackets of elementary or composite particles, with lower and upper mass gaps, on a quantum computer assuming
preparation of the vacuum state of the interacting theory is available and we have access to an interpolating operator
between the vacuum and the particle we want to create. The key idea is to exploit the Haag-Ruelle scattering
theory, which is an alternative and complementary approach of the Lehmann-Symanzik-Zimmerman (LSZ) theory.
The method requires a number of ancillary qubits that is logarithmic in the size of the wavepacket. We provide a
quantum circuit with a gate complexity that is equivalent to that of a time evolution for a fixed time, and with a
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certain probability of success. We provide evidence that this probability does not vanish faster than a polynomial
in the relevant parameters of the simulation such as the lattice spacing. For definiteness we work here with a single
scalar field, because it is an illustrative case and is directly comparable with what is available in the literature, but
the idea holds, mutatis mutandis, with other theories as well.

State preparation is typically the most difficult step in digital quantum simulation of scattering, both technically
and in terms of complexity. This work concerns only a part of it, but provides an innovative approach to the topic
and clears the way to preparation of composite particles. Here we do not consider how to prepare the vacuum state.
It is an interesting problem on its own and has already been addressed by other papers [38–41]. For example one may
use the free vacuum preparation and the adiabatic transformation of [10], with the simplification that no backward
time evolution is needed to contain premature wavepacket propagation, which we will address in the future. If one is
interested only in scattering amplitudes, a simpler approach not involving quantum simulation would be [42]. However
that approach works only for fixed final states and for processes with a small total number n of ingoing and outgoing
particles, as the complexity scales exponentially with n.

Above we mentioned that we rely on the existence of lower and upper mass gaps, but in general we can also
have bound states immersed in the continuum of multi-particle states on condition that they are protected by some
symmetry. In this case our strategy is still suitable with some extra caveats. Gauge theories, as usual, require
special attention too, not only for the well known issues related to quantum simulation of these theories, but also
in the formulation of the Haag-Ruelle theory in presence of massless particles like photons and gluons. However, we
believe that with the proper care these problems can be solved. On the other hand, it is not suited for creation of
ultra-relativistic and massless particles, for which the mass gap is small or null.

The paper is divided into two main sections. In the first one we introduce very briefly the axiomatic approach
to quantum field theory where the Haag-Ruelle scattering theory is developed. We list the Wightman axioms and
comment some of them to introduce basic concepts of the theory. We end this section with some remarks on the
applicability of the idea of this work. In the second section we describe how the Haag-Ruelle scattering theory can
be used for state preparation in digital quantum simulation. We provide a quantum algorithm for particle creation
from the interacting vacuum and analyse its complexity. After these two sections we give our conclusions.

II. THE HAAG-RUELLE SCATTERING THEORY

The Haag-Ruelle scattering theory is developed in the framework of axiomatic quantum field theory. The axiomatic
approach provides a rigorous framework to construct a quantum field theory. It is based on a set of axioms formulated
byWightman and incorporating at the same time principles of quantummechanics and special relativity. An important
feature of this approach is that free and interacting theories are treated on equal terms. In particular interacting
theories are not seen as extensions of free theories, obtained by adding interaction terms to a quadratic Hamiltonian.
The difference between free and interacting theories is mainly of a pragmatical nature, because we can solve and
construct explicitly free theories, but for most of the interacting theories the same is not true. For this reason it
is quite uncommon to use this approach constructively. Here we assume that a theory like φ4 satisfies the axioms,
although a rigorous proof of this is still lacking except in one or two space dimensions [43–48]. We consider d = D− 1
space dimensions.

In this section we give a brief review of the axioms following essentially chapter 9 of [49]. It is convenient to divide
the whole set of axioms into a few families according to their content. The first one concerns the space of states and
the spectral properties of the theory:

1. Axiom Ia The state space H of the system is a separable Hilbert space. It carries a unitary representation
U(Λ, x) (Λ an element of the Homogeneous Lorentz Group (HLG), x a spacetime coordinate vector) of the
proper inhomogeneous Lorentz group (i.e., the Poincaré group). Thus, for all |α〉 ∈ H, |α〉 → U(Λ, x) |α〉, with
the U(Λ, x) satisfying the Poincaré algebra U(Λ1, x1)U(Λ2, x2) = U(Λ1Λ2, x1 + Λ1x2).

2. Axiom Ib The infinitesimal generators Pµ of the translation subgroup T (x) = U(11, x) of the Poincaré group
have a spectrum pµ restricted to the forward light-cone, p0 ≥ 0, p2 ≥ 0.

3. Axiom Ic There is a unique state |Ω〉, the vacuum, with the isolated eigenvalue pµ = 0 of Pµ.

4. Axiom Id The theory has a mass gap: the squared-mass operator P 2 = PµP
µ has an isolated eigenvaluem2 > 0,

and the spectrum of P 2 is empty between 0 and m2. The subspace of H corresponding to the eigenvalue m2

carries an irreducible spin-0 representation of the HLG. These are the single-particle states of the theory. The
remaining spectrum of P 2 is continuous, and begins at (2m)2.
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Clearly the specific form of the generators Pµ depends on the theory at hand and the generator of translations in time
is the Hamiltonian, P0 = H. One-particle states can be labelled according to their momentum and can be written as
|α〉 =

∫
ddk g(k) |k〉.

The next family of axioms concerns the operator content of the Hilbert space and establish what kind of fields
appear in the theory:

5. Axiom IIa An operator-valued (tempered) distribution φ̂(x) exists such that for any Schwartz test function
f(x) the smeared field

φf =

∫
dDx f(x)φ̂(x) (1)

is an unbounded operator defined on a dense subset D ⊂ H. Moreover, φfD ⊂ D, allowing the definition of
arbitrary (finite) products of smeared fields.

We recall that a Schwartz function f(x) is perfectly smooth, i.e. C∞, and decays faster than any power as x goes to
infinity.

6. Axiom IIb Under the unitary representation of the Poincaré group U(Λ, x) introduced in Axiom Ia, the
smeared fields transform as

U(Λ, x)φfU
†(Λ, x) = φfΛ,x , fΛ,x(y) = f(Λ−1(y − x)). (2)

7. Axiom IIc Let f1, f2 be Schwartz functions of compact support: thus, if f1 vanishes outside a compact region
v1 of spacetime, and f2 vanishes outside of the compact region v2, and if x1 − x2 is space-like for all x1 ∈ v1,
x2 ∈ v2, then [

φf1 , φf2

]
= 0. (3)

8. Axiom IId The set of states obtained by applying arbitrary polynomials in the smeared fields φf (with all
possible Schwartz functions f) to the vacuum state |Ω〉 is dense in the Hilbert space H.

In Axiom IIa we find an important difference with canonical quantization, namely smeared operators. In a free
theory we can identify the operator-valued distribution φ̂(x) with the familiar field operator. This is not a well
defined operator because the state φ̂(x) |Ω〉 has infinite norm. To avoid this problem it is necessary to introduce
smearing and treat φ̂(x) as a distribution. Then, by Axiom IIb, we can define

φf (x) = eiP ·xφfe
−iP ·x =

∫
dDy f(y − x)φ̂(y). (4)

There are two more axioms of great importance to develop a satisfactory scattering theory:

9. Axiom IIIa For some one-particle state |α〉 =
∫
ddkg(k) |k〉 with discrete eigenvalue m2 of the squared-mass

operator the smeared field φf (x) has a non-vanishing matrix element from this single-particle state to the
vacuum, 〈Ω|φf (x)|α〉 6= 0.

10. Axiom IIIb (asymptotic completeness) The Hilbert space Hin (resp. Hout) corresponding to multi-particle
states of far-separated, freely moving stable particles in the far past (resp. far future) are unitarily equivalent,
and may be identified with the full Hilbert space H of the system.

It should be noted that Axiom IIIb plays a crucial role in the derivation of the LSZ reduction formula, but here is
somewhat superfluous.

The joint set of eigenvalues of Pµ, labelled by pµ has a structure made of three disconnected subsets (see figure 1).
There is the vacuum subset, containing only the origin pµ = 0. Then we have the one-particle mass hyperboloid,
containing all the pµ points such that p2 = m2. Finally we have the multi-particle continuum with all the points such
that p2 ≥ 4m2 (in the two-particle subspace for instance, the squared mass operator gives (p1 + p2)2 = 2m2 + 2p1 · p2,
with p1 · p2 ≥ m2).

With this in mind we define an operator φ1(x) exactly as in (4), but with a smearing function f1(x) chosen as the
Fourier transform of a function f̃1(p) with support in the region am2 < p2 < bm2, with 0 < a < 1 < b < 4, sandwiching
the one-particle mass hyperboloid. This guarantees that the state φ1(x) |Ω〉 is a one-particle (and one-particle only)
state, by Axiom IIIa.
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FIG. 1: Structure of the spectrum of Pµ with one space dimension. The blue line represents the one-particle mass
hyperboloid, the red region is the multi-particle continuum and the green region is the region defined by

am2 < p2 < bm2.

Next consider a positive energy solution of the Klein-Gordon equation,

g(τ,y) =

∫
ddp

2E(p)
g̃(p)ei(p·y−E(p)τ), E(p) =

√
m2 + |p|2, (5)

and define the operator

φ1,g(τ) = −i
∫
ddy

[
g(τ,y)

←→
∂

∂τ
φ1(τ,y)

]
, (6)

where the double derivative is defined as in

A(τ)

←→
∂

∂τ
B(τ) = A(τ)Ḃ(τ)− Ȧ(τ)B(τ). (7)

The state φ1,g(τ) |Ω〉 can be shown to be independent of τ ,

d

dτ
φ1,g(τ) |Ω〉 = 0. (8)

This is no longer true in general if we consider multiple applications of such operators at the same time τ ,
φ1,g1

(τ) · · ·φ1,g2
(τ) |Ω〉, but in this case we can count on the following theorem

Theorem 1 (Haag Asymptotic). The time-dependent state vector

|Ψ, τ〉 = φ1,g1
(τ) · · ·φ1,gn(τ) |Ω〉 (9)

converges strongly in the limit τ → −∞ to the n-particle in-state

|Ψ〉in = |g1, g2, . . . , gn〉in =

∫
ddp1 . . . d

dpn ψ̃1,g1
(p1) · · · ψ̃1,gn(pn) |p1 . . .pn〉in , (10)

with momentum wavefunctions

ψ̃1,gi(pi) = (2π)d/2
g̃(pi)f̃1(pi)√

2E(pi)
. (11)

A remark concerning the content of this theorem may be useful at this point. The state |Ψ〉in is a Heisenberg state,
which means that it is not to be taken in general as a state made of n (spatially) well-separated wavepackets, but
its form depends on the time that is chosen as reference, or in other words the time at which the Heisenberg state
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and the Schrödinger state coincide. We can choose a moment well before the collision between the wavepackets takes
place, in which case we indeed have well-separated wavepackets, or a moment during the collision or later, in which
case we can expect to have a complicated state more or less spread in space. The strong convergence of the theorem
is to be taken at the same reference time, whether in the far past or not, both for |Ψ, τ〉 and |Ψ〉in. Also, the reference
time should not be confused with the parameter τ appearing in the theorem.

Let us see more explicitly what stated so far, starting from the state

φ1,g(τ) |Ω〉 =

∫
dDxψ(x; τ)φ̂(x) |Ω〉 , (12)

where, writing x = (t,x),

ψ(x; τ) =
i

2

∫
ddy

∫
ddp g̃(p)ei(p·y−E(p)τ)

[
ḟ1(t− τ,x− y)

E(p)
− if1(t− τ,x− y)

]
. (13)

For our purposes it is convenient to move to the Schrödinger picture by plugging

φ̂(x) = eitH φ̂(0,x)e−iHt = eitH φ̂(x)e−iHt (14)

into (12). If we assume, without loss of generality, f1(t,x) temporally peaked around t = 0, then ψ(t + τ,x; τ) is
peaked around t = 0 as well. Shifting t→ t+ τ we get

φ1,g(τ) |Ω〉 = eiHτ
∫
dDxψ(t+ τ,x; τ)eiHtφ̂(x) |Ω〉 . (15)

Looking at the expression (13), we see that, apart from the smearing due to f1, ψ(t+ τ,x; τ) is a wavepacket moving
through space as a positive energy solution of the Klein-Gordon equation with time τ . Then, for any τ , the backward
time evolution operator eiHτ puts the wavepacket back to its initial condition at τ = 0, hence the independence of
φ1,g(τ) |Ω〉 on τ .

Similarly, in the case of two incoming particles we can write

φ1,g1
(τ)φ1,g2

(τ) |Ω〉 = eiHτ
∫
dDx1 ψ1(t1 + τ,x1; τ)eiHt1 φ̂(x1)e−iHt1

∫
dDx2 ψ2(t2 + τ,x2; τ)eiHt2 φ̂(x2) |Ω〉 . (16)

Written in this form the action of the operators φ1,g1
(t)φ1,g2

(t) on the vacuum is clear: as τ → −∞, the two
wavefunctions ψ1(t1 + τ,x1; τ) and ψ2(t2 + τ,x2; τ) are sent back to infinity where the two operators φ̂(x1) and φ̂(x2)
act independently from each other. Then the time evolution operator eiHτ evolves the system forward making the
two wavepackets approach and collide with each other, depending on the initial conditions chosen for ψ1 and ψ2.

In particular we can choose g1(τ,y1) and g2(τ,y2) such that their wavepackets ψ1 and ψ2 are always well separated
from each other for τ ≤ 0, and are on a collision course for some future time. Provided that interactions between two
particles are short-ranged in the theory, we can consider the two operators φ1,g1

(τ) and φ1,g2
(τ) independent from

each other and the state φ1,g1
(τ)φ1,g2

(τ) |Ω〉 independent from τ for τ ≤ 0 with excellent precision. Thus, with a
proper choice of g1(τ,y1) and g2(τ,y2) we can take τ = 0 in (16).

We conclude this section with some remarks on the validity of the theory just described. Here we have considered
for simplicity a theory with a single particle of mass m. More in general we can consider theories in which the
mass-squared operator has a set of discrete eigenvalues between m2 and (2m)2. These are the bound states of the
theory. Moreover we can have bound states for which the corresponding eigenvalues of P 2 fall in the multi-particle
continuum on condition that they are protected by some symmetry. In this case the symmetry selects a sector of
the Hilbert space and when we restrict the mass-squared operator to this sector, such eigenvalues appear as discrete
points again.

The Haag Asymptotic Theorem critically depends on two assumptions:

1. existence of lower and upper mass gap for the particle we want to create in such a way that it is possible to
sandwich the mass hyperboloid corresponding to such a particle;

2. we have access to an operator interpolating between the vacuum and one-particle states of the particle we want
to create.

Clearly, studying these two conditions strongly depends on the theory in consideration and can be very difficult, but
we can use standard techniques of lattice quantum field theory to study these properties model by model. Smearing
a field operator in time can be avoided if we have at our disposal an operator that does not couple the vacuum to
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anc. / V

Φ(t1) Φ(t2)

. . .

Φ(tN )

V ′

x1 /

e−iHt1 eiH(t1−t2)

. . .

eiH(tN−1−tN ) eiHtN

x2 / . . .

...
xS / . . .

Γ / . . .

(a) Circuit 1: High level overview of the circuit implementing O. The operators Φ(ti) are described in
the circuit below.

anc. / ti,x1 ti,x2 . . . ti,xS

x1 /

e−iHti

φ̂ . . .

eiHti

x2 / φ̂ . . .

...
. . .

xS / . . . φ̂

Φ(ti)

Γ / . . .

(b) Circuit 2: Overview of the operator implementing O(ti). The symbol connecting φ̂ in a
squared box to the rounded box containing ti,xj represents the operator φ̂(x) controlled on

the state |ti,xj〉.

FIG. 2: Description of the circuit implementing O. The slash at the beginning of each line means that the line
represents a register of qubits: anc. is the ancillary register of Na qubits; xi is the register of k qubits dedicated to

the site xi; Γ is the set of qubits dedicated to the rest of the lattice.

multi-particle states (as it happens for free theories). For a bound state whose mass is immersed in the continuum
of other particles, we also need to ensure that the interpolating operator couples only to the sector where the bound
state lives. The whole framework is perfectly valid if we consider operators obtained as smeared products of the
elementary fields. For example we could start with something like

φf =

∫
dDydDz f(y, z)φ̂1(y)φ̂2(z), (17)

if the product φ̂1(x)φ̂2(y) provides the right quantum numbers for the particle we want to create. Then everything
proceeds on the same lines as above, like

φf (x) = eiP ·xφfe
−iP ·x =

∫
dDydDz f(y − x, z − x)φ̂1(y)φ̂1(z). (18)



7

III. STATE PREPARATION EXPLOITING THE HAAG-RUELLE THEORY

Assuming all of this holds as an approximation on the lattice, we can write (we take τ = 0 and ψ(t,x) = ψ(t,x; 0)
from now on)

φ1,g1
(0)φ1,g2

(0) |Ω〉 =

=
∑
x1

ad
∫ +∞

−∞
dt1 ψ1(t1,x1)eiHt1 φ̂(x1)e−iHt1

∑
x2

ad
∫ +∞

−∞
dt2 ψ2(t2,x2)eiHt2 φ̂(x2) |Ω〉 . (19)

In the following we will see how to implement the operator∑
x

ad
∫ +∞

−∞
dt ψ(t,x)eiHtφ̂(x)e−iHt (20)

on a quantum computer. First of all we truncate the integration over t and the summation over x around the spacetime
region where ψ is significantly different from zero, which, since ψ is a Schwartz function, introduces an error vanishing
faster than any power as the hyper-volume of the region is increased. We label the space points in this region by
x1, . . . ,xS and we approximate the integral with a sum over time points t1, . . . , tN with spacing δt. Thus we have

O =

N∑
i=1

S∑
j=1

adδtψ(ti,xj)e
iHti φ̂(xj)e

−iHti =

N∑
i=1

O(ti). (21)

We work in the field basis, [10, 50], where the operator φ̂(x) is diagonal. If k qubits are dedicated to the lattice site
x, then φ̂(x) is implemented by a linear combination of Z Pauli matrices,

φ̂(x) =
φmax

2k − 1

k−1∑
i=0

2iσz(x,i). (22)

This operator is not unitary, but can be implemented with linear combination of unitaries (LCU) [51]. Furthermore,
the operator O can be implemented with LCU as well, with probability of success

ρ =

(
‖O |Ω〉‖

α

)2

, α = φmax

N∑
i=1

S∑
j=1

adδt|ψ(ti,xj)|. (23)

It is not easy to determine exactly ρ (more on this at the end of this section), but one could use, for example, the
techniques described in [52] to find numerical estimates for it. Then, one would have to repeat state preparation
O(1/ρ) times in order to get the desired initial state, or, alternatively, one could apply amplitude amplification [52]
to obtain a quadratic speed-up at the expense of a larger circuit depth.

Circuit description We want to give a high-level description of a circuit implementing O so we will focus only on
the dependence on the lattice sites and the time to keep the discussion concise. We take a register of Na = dlog(kNS)e
ancillary qubits and we label the computational basis as |ti,xj〉, with i = 1, . . . , N and j = 1, . . . , S.

We define operators Vψ and V ′ψ such that

Vψ |0〉⊗Na =
1√
‖ψ‖1

N∑
i=1

S∑
j=1

√
adδtψ(ti,xj) |ti,xj〉 , (24)

V ′
†
ψ |0〉

⊗Na =
1√
‖ψ‖1

N∑
i=1

S∑
j=1

(√
adδtψ(ti,xj)

)∗
|ti,xj〉 . (25)

Then the circuits in figure 2 implement the operator O written in (21) up to a normalization factor and when the
state |0〉⊗Na is obtained by measuring the ancillary register. In general we have t1 < 0, tN > 0 and ti − ti+1 = −δt,
therefore the sequence of time evolution operators appearing in Circuit 1 consists of a backward evolution for time
|t1|, followed by N steps forward, each one of time δt for a total of tN − t1, and by a final backward evolution
for time tN . In Circuit 2 we notice that controlling only each φ̂ is equivalent to controlling e−iHti φ̂eiHti because
e−iHtieiHti = 11.
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Complexity We will show that the complexity of Circuit 1 is dominated by the sequence of time evolutions.
We do not want to discuss here how to implement the time evolution, as this is not in the scope of this work.

The sequence of operators Φ(t1), . . . ,Φ(tN ) requires O(SN) gates, as well as the operators V and V ′ that basically
provide generic state preparation on Na qubits, and we have S < V. We can estimate the error introduced by
discretizing the integral over t, and hence how large N needs to be, in the following way. We take t0 = t1 − δt/2 and
T = tN − t1 + δt. Then we split the integral from t0 to t0 + T into N integrals in the following way:∫ t0+T

t0

ψ(t,x)eiHtφ̂(x)e−iHtdt =

N∑
i=1

∫ ti+
δt
2

ti− δt2
ψ(t,x)eiHtφ̂(x)e−iHtdt

=

N∑
i=1

∫ δt
2

− δt2
ψ(ti + t,x)eiHtieiHtφ̂(x)e−iHte−iHtidt, (26)

where from the first to the second line we have shifted the integration variable, t→ t+ ti. We expand eiHtφ̂(x)e−iHt

using the well known formula

eABe−A = B + [A,B] +
1

2

[
A, [A,B]

]
+ . . . (27)

and ψ(ti + t,x) using the Taylor expansion around t = 0 up to order t2. Odd orders in t do not contribute because
the integration domain is symmetric around zero. The leading order gives us exactly the operators appearing in (21).
We use the spectral norm of the next to leading order to estimate the error due to discretization and we apply the
triangular inequality:

ε =
δ3
t

24

∥∥∥∥∥
N∑
i=1

eiHti
(
ψ̈(ti,x)φ̂(x) + 2iψ̇(ti,x)[H, φ̂(x)]− ψ(ti,x)

[
H, [H, φ̂(x)]

])
e−iHti

∥∥∥∥∥
≤ δ

2
t

24

( N∑
i=1

δt|ψ̈(ti,x)|
∥∥∥φ̂(x)

∥∥∥+ 2

N∑
i=1

δt|ψ̇(ti,x)|
∥∥∥[H, φ̂(x)]

∥∥∥+

N∑
i=1

δt|ψ(ti,x)|
∥∥∥[H, [H, φ̂(x)]

]∥∥∥). (28)

The dominant contribution is given by the term with
[
H, [H, φ̂(x)]

]
and the quantity

N∑
i=1

δt|ψ(ti,x)| (29)

is approximately a constant independent of the lattice and the precision. Finally, given that T = δtN , we have

N = O

(
T√
ε

√∥∥∥[H, [H, φ̂(x)]
]∥∥∥). (30)

If we use a first-order Suzuki-Trotter formula to implement the time evolution, we need [53]

NST = O

(
T 2

ε
‖[Hφ, Hπ]‖

)
(31)

Trotter steps to keep the error below ε. As the reader may check by looking at expressions (32) and (33), the
commutator [Hφ, Hπ] scales with the total size of the lattice, as it involves a summation over all the sites, while[
H, [H, φ̂(x)]

]
involves only a few neighbours of x. Thus, NST clearly dominates over N even if we consider higher

order product formulae. This shows that the complexity is determined by the time evolution.
For the φ4 theory we have

[
H, [H, φ̂(x)]

]
=

1

a2

d∑
i=1

[
2φ̂(x)− φ̂(x + r̂i)− φ̂(x− r̂i)

]
+m2

0φ̂(x) +
λ0

3!
φ̂(x)3, (32)

[Hφ, Hπ] = i
∑
x

ad
[

1

a2

d∑
j=1

(
φ̂(x)π̂(x) + φ̂(x + r̂j)π̂(x + r̂j)− φ̂(x + r̂j)π̂(x)− φ̂(x)π̂(x + r̂j)−

i

ad

)
+

+
m2

0

2

(
2φ̂(x)π̂(x)− i

ad

)
+
λ0

12

(
2φ̂3(x)π̂(x)− 3i

ad
φ̂(x)2

)]
. (33)
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On the success probability Here we want to provide some intuition on what to expect from the probability ρ.
We can write the vacuum state in the basis of φ̂(x) as

|Ω〉 =
∑

φ1,...,φV

Ω(φ1, . . . , φV) |φ1 . . . φV〉 , (34)

where 1, . . . ,V is some labelling of the lattice sites such that 1, . . . , S are the sites on the support of ψ. Then, our
target state is

O |Ω〉 =

N∑
i=1

S∑
j=1

adδtψ(ti,xj)e
itiH φ̂(xj) |Ω〉

=
∑
{φ}

N∑
i=1

δtΨti(φ1, . . . , φS)Ω(φ1, . . . , φV)eitiH |φ1 . . . φV〉 , (35)

where

Ψti(φ1, . . . , φS) =

S∑
j=1

adψ(ti,xj)φj . (36)

Introducing |ΨtkΩ〉 =
∑
{φ}Ψti({φ})Ω({φ}) |{φ}〉, the squared norm can be written as

‖O |Ω〉‖2 =

N∑
i=1

δ2
t 〈ΨtiΩ|ΨtiΩ〉+

∑
i 6=j

δ2
t Re 〈ΨtiΩ| eiH(ti−tj)

∣∣ΨtjΩ
〉
. (37)

In the second summation, the matrix elements with small |ti − tj | should not be far from ‖|ΨtiΩ〉‖
2. When |ti − tj |

starts growing, negative contributions should start to appear, and cancellations between matrix elements start to
occur. However, terms with large |ti − tj | are suppressed by the fast decay of ψ, so the second summation should be
positive. Thus, we are led to think that the first summation gives the dominant contribution, that is, written more
explicitly,

‖O |Ω〉‖2 &
N∑
i=1

∑
{φ}

δ2
t |Ψti(φ1, . . . , φS)Ω(φ1, . . . , φV)|2. (38)

The region identified by Ψti(φ1, . . . , φS) = 0 is a hyperplane crossing the origin in the hyperspace of the variables
φ1, . . . φV .

A basic example from the harmonic oscillator in one dimension should help to gain some insight. The ground state
of the harmonic oscillator is a normalized Gaussian

ω(φ̃) =
( 1

πs̃2

) 1
4

exp

(
− φ̃2

2s̃2

)
. (39)

Then, the state φ̃ω(φ̃) has squared norm ∫ +∞

−∞
dφ̃ φ̃2ω2(φ̃) =

s̃2

2
, (40)

and φ̃ω(φ̃)/s̃ has squared norm O(1).
Going back to our case, let s be the linear size of Ω(φ1, . . . , φV) in the hyperspace of φ1, . . . , φV . Then it is quite

reasonable to say that ‖O |Ω〉‖/s = O(1) and thus

ρ =

(
‖O |Ω〉‖/s

α/s

)2

= O

(( s

φmax

)2
)
. (41)

In the case of a single harmonic oscillator with energy Ẽ, it is enough to take (s̃/φ̃max)2 = O(1/Ẽ). In the case of
the φ4 theory on the lattice, it is harder to determine the scaling of s/φmax. However, in [9, 10], a rough polynomial
estimate for φmax is given, which is probably overly pessimistic, and overall we can conclude that ρ does not vanish
faster than a polynomial.
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IV. CONCLUSIONS

In this paper we provide a quantum algorithm to create single-particle wavepackets of a lattice quantum field theory
starting from the vacuum state. The method we propose is quite general and the idea is independent of details of the
model. For example it works equally well for free and interacting theories. The key aspect of our strategy is that it is
suitable for preparation of composite particles, which is an important novelty in the context of quantum simulation
of relativistic scattering. To our knowledge this is the first work on state preparation of bound states for quantum
simulation of scattering.

The work is based on the Haag-Ruelle scattering theory in the framework of axiomatic quantum field theory, which
is ideal for quantum simulation as it is developed in the operator formalism. In this respect this work also shows
the potential importance that the axiomatic approach might have on quantum computation applied to quantum field
theory, as both fields are suited to nonperturbative investigations from first principles.

This work alone is not enough to complete state preparation of scattering, but it decomposes the problem into more
approachable ones. On one hand, efficient techniques to prepare the vacuum state are required. On the other, one
has to find interpolating operators with the right properties for a given particle in a given theory, and needs to know
the size of the corresponding lower and upper mass gaps. On the first front much work has already been done in the
context of quantum computation, while for the second front standard techniques of Euclidean lattice field theory are
available. As a next step, the approach of this work needs to be specialized case by case. Also, we need to investigate
how gauge invariance and presence of massless particles affect this approach.
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