
Investigating Quantum Speedup for Track Reconstruction:

Classical and Quantum Computational Complexity Analysis

D. Magano1,2, A. Kumar1,3, M. Kālis4, A. Locāns4, A. Glos5,
S. Pratapsi1,2, G. Quinta1, M. Dimitrijevs4, A. Rivošs4,

P. Bargassa1,6, J. Seixas2,7, A. Ambainis4, and Y. Omar1,2

1Physics of Information and Quantum Technologies Group, Instituto de Telecomunicações, Portugal
2Instituto Superior Técnico, Universidade de Lisboa, Portugal

3Department of Mathematics, Clarkson University, USA
4Center for Quantum Computer Science, Faculty of Computing, University of Latvia, Latvia

5Institute of Theoretical and Applied Informatics, Polish Academy of Sciences, Poland
6Laboratório de Instrumentação e F́ısica Experimental de Part́ıculas, Portugal

7Center for Physics and Engineering of Advanced Materials, Portugal

22 April 2021

To investigate the fundamental nature of matter and its interactions, particles are ac-
celerated to very high energies and collided inside detectors, producing a multitude of other
particles that are scattered in all directions. As the charged particles traverse the detector,
they leave signals of their passage. The problem of track reconstruction is to recover the
original trajectories from these signals. This represents a very challenging data analysis
problem, which will become even more demanding as the luminosity of future accelerators
keeps increasing, leading to collision events with a more complex structure. Therefore, there
is a pressing need to develop more efficient methods, capable of sieving through the vast
amount of data produced by these machines, in order to find the extremely rare events that
may contain the clues for new Physics. In light of these challenges, approaches to track
reconstruction based on quantum computation have recently been put forward.

In this work, we study track reconstruction from a computational complexity perspective.
Namely, we analyse a standard algorithm for tracking, the Combinatorial Track Finder, in
the asymptotic limit of infinitely many recorded particles. First, we show that it is possible
to improve the classical algorithm in this regime. Then, we show how to use quantum search
routines to reach a lower computational complexity. And – although the found quantum
speed-up is modest and of limited practical advantage in finite scenarios – to the best of
our knowledge this constitutes the first theoretical proof of a quantum advantage for a
state-of-the-art track reconstruction method, which we hope can further inspire classical
and quantum improvements to High-Energy Physics computational challenges.

1

ar
X

iv
:2

10
4.

11
58

3v
1

 [
qu

an
t-

ph
]

 2
3

A
pr

 2
02

1

1 Introduction

Most of our understanding about the fundamental interactions and the sub-nuclear structure of
matter comes from exploring the results of colliding highly energetic particles (moving close to
the speed of light) in accelerator machines. These collisions produce a myriad of secondary par-
ticles, which must be detected and their trajectories subsequently reconstructed using especially
designed computer algorithms. The search for new Physics beyond the Standard Model requires
being able to detect and process extremely rare events among vasts amounts of data. Experi-
mental High-Energy Physics (HEP), especially the Large Hadron Collider (LHC) programme at
CERN, is for this reason one of the most demanding activities in the world in terms of computing
resources [1]. This demand will grow dramatically after 2026 with the upcoming High-Luminosity
phase of the LHC [2], and even more in future machines, such as the Future Circular Collider
[3]. Indeed, the next generation of particle accelerators promises an increase in beam luminos-
ity, which amounts to more produced particles and more complex collision events. With this,
processing the raw data obtained in the particle detectors into useful information that can be
analysed by high-energy physicists will become such a formidable task that it will likely require
completely new technological paradigms. Quantum computing, promising significant speedups
or reduced computational and energetic resources for specific problems, may play a key role in
overcoming these challenges.

In recent years, quantum algorithms have been proposed for specific tasks in HEP data pro-
cessing and analysis. In this paper, we address the problem of track reconstruction. Previous
work in this direction includes solutions based on quantum annealing [4–6] and on quantum
machine learning [7–11]. We note that event selection, another crucial task in HEP data process-
ing, has also been approached using techniques from quantum annealing [12], quantum machine
learning [13–16], and quantum search [17]. Complementary to this effort, [18] discusses quantum
methods for the simulation of HEP events.

These promising proposals were typically conceived already with a quantum framework in
mind, and were tested with very small problem instances due to the present quantum hardware
limitations. Therefore, it remained an open question whether one could prove a quantum speedup
for a relevant task meeting the high-volume requirements of HEP data processing. A route
towards this goal is to consider the computational complexity of standard HEP algorithms and
whether quantum computers could be used to improve it. In [19], the classical and quantum
computational scaling of a well-known jet clustering algorithm is studied: a quantum algorithm
with speedup is found, as well as an alternative classical algorithm that matches the quantum
performance, therefore establishing no quantum advantage.

In our work, we analyse the computational complexity of the Combinatorial Track Finder
(CTF) algorithm [20], which is the tracking1 algorithm used by the CMS collaboration at CERN.
Our analysis covers the algorithm as it is described in [20]. We note that a new version has
recently been published [21], keeping essentially the same structure, with some particular im-
provements, as we discuss later in this paper. We show that we can reconstruct the same tracks
(up to bounded-error probability) with lower quantum complexity by an adequate use of quan-
tum search routines. While we focus on this specific tracking algorithm for concreteness, the
underlying structure of the CTF, the combinatorial Kalman filter [22], is shared among several
modern track reconstruction programmes [23–25]. Furthermore, the level of abstraction of our
analysis facilitates extrapolating our conclusions to other situations.

Let n be the number of charged particles produced per event record. We find that the
computational complexity of the CTF algorithm is O(n6) – Theorem 8. We then propose a
modification to a stage of the classical algorithm that lowers the overall complexity to O(n4) –

1We will be using the terms “track reconstruction” and “tracking” indistinguishably.

2

Theorem 10. We show that we can use the quantum minimum finding algorithm [26] to speed
up a subroutine of track reconstruction, reaching a quantum computational scaling of Õ(n3.5) –
Theorem 17. These results hold under the worst-case scenario where the number of reconstructed
tracks scales as n3. We also show that, depending on the number of initial track candidates
formed (known as the track seeds), the quantum advantage may be further improved using
quantum search. We also consider the case where we are given the promise that the CTF
“extrapolates adequately” to the asymptotic regime, that is, the number of reconstructed tracks
is O(n). With this assumption, we show that we can achieve a quantum complexity of Õ(n3)
using a two-level quantum minimum finding algorithm – Theorem 22.

To the best of our knowledge, this is the first theoretical proof of a quantum speedup for
a relevant HEP data processing task. Of course, executing our algorithm would require access
to large-scale fault-tolerant quantum computers, as well as QRAM access to the hits’ data. So,
we do not expect it to be applicable in the coming years. Moreover, the speedups are probably
too modest to guarantee that there will be a practical advantage in using quantum computers
to run the CTF algorithm (see, for example, [27]). Nevertheless, the point of our work is not
that our specific proposal will necessarily be the best way to perform track reconstruction in the
future. Instead, we mean to provide a new perspective on the suitability of the current tracking
methods for extremely high-luminosity events, highlighting the steps of the reconstruction that
could benefit from quantum processing. Ultimately, we hope that our analysis may motivate the
search for more quantum solutions in this area, as we have shown that there is the possibility to
improve the classical computational scaling.

1.1 Structure of the Paper

We organize this paper as follows. In Section 2 we summarize some preliminary information that
will be useful for understanding the subsequent sections of the paper. We start by providing a
qualitative overview of the problem of track reconstruction (Section 2.1), following with a brief
description of the computational models underlying our analysis (Section 2.2). In Section 3 we
introduce our model of tracking and describe the CTF algorithm (Sections 3.1-3.4). The classical
complexity of the CTF is stated in Section 3.5. Then, we propose a classical modification to the
CTF algorithm in Section 4. It is in Section 5 that we introduce quantum algorithms for track
reconstruction. We start by describing how to perform seed generation with quantum search in
Section 5.1. In Section 5.2 we show how a routine based on quantum minimum finding permits
reaching a lower complexity than the classical CTF even in the worst-case scenario. Finally, in
Section 5.3 we propose a two-level quantum minimum finding algorithm that solves tracking with
an improved scaling depending on the total number of reconstructed tracks. Before concluding
(Section 7), we devote Section 6 to discussing the assumptions of our analysis.

2 Preliminaries

2.1 Overview of Track Reconstruction

In particle physics experiments, particles are accelerated to very high energies and collide in
bunches inside tracking detectors. In these collisions, new particles are created and scattered
in all directions. As charged particles cross the detector’s multiple layers, they leave signals
of their passage, which are converted into three-dimensional points called hits. The collection
of hits that was left by such a particle is called that particle’s track. The event record of an
experiment consists of the totality of signals from all particles of an interaction (or possibly
several interactions) after one full readout of the detector. The goal of tracking is to reconstruct

3

(a) The input to tracking is a set of hits (red cir-
cles) corresponding to detections of the particles’
passage.

(b) We recover the original trajectories (dotted
black lines) by grouping hits that belong to the
same particle.

Figure 1: Illustration of track reconstruction. Transverse view of a tracking detector with cylin-
drical layers (dashed grey lines).

the particles’ tracks from the event record. See Figure 1 for an illustration. We can use dynamical
models for the particles’ trajectories to discriminate which hits belong to the same particle track.
However, given that in real experiments an event can contain several thousand hits, most of the
combination of hits (candidate tracks) will not correspond to an actual particle. So, we need
efficient algorithms to reconstruct the tracks in useful time.

Different approaches in local and global methods of tracking have been applied in experimental
particle physics [28], each with its strengths and shortcomings. The quantum proposals so far
[4–10] are based on global methods, treating all hit information in an equal and unbiased way.
In contrast, here we consider the reconstruction algorithm used at the CMS experiment, known
as the Combinatorial Track Finder (CTF) [20], which belongs to the category of local methods.
Like all algorithms of this type, it involves three main ingredients. First, it requires a method
to generate track seeds, which consist of rudimentary initial track candidates formed by just a
minimal set of hits. Then, it relies on a parametric track model, which assigns to a track a set
of trajectory parameters and provides a method of extrapolation along the trajectory. Finally,
a quality criterion distinguishes good track candidates from the fake ones, discarding the latter
from the solution. In Figures 2 and 3 we sketch the CTF algorithm. In Section 3, we explain it
in detail and study its computational complexity.

2.2 Computational Model

The running time of the CTF algorithm is the result of different factors. Naturally, the larger
the number of recorded particles the more demanding track reconstruction becomes. At the
LHC, sophisticated computational architectures are employed to optimize the running time.
Furthermore, the parameters of the tracking software are carefully adjusted to achieve in useful
time a track reconstruction with the desired accuracy, under some assumptions on the observed
events.

In this work, we offer a different perspective on tracking, focusing on the computational com-
plexity of the problem. In other words, we are interested in understanding how it fundamentally

4

(a) Seed Generation. In the CTF algorithm we start by forming seeds, that is, triplets of hits from the
three inner layers. We highlight in green a possible seed.

(b) Track Finding. The trajectory defined by the seed highlighted in panel 2a is continued until it
meets the next layer. If we find more than one hit close to the predicted trajectory, we may form new
tracks that are then continued independently. This procedure is repeated until we reach the end of the
detector – the track is accepted to the next stage – or we find too many layers without a close hit – the
track is dropped.

Figure 2: The first two stages of the Combinatorial Track Finder (CFT) algorithm: seed gener-
ation and track finding. The charged particles resulting from a collision travel from left to right,
their hits (red dots) behind recorded as they cross the detector layers (dotted grey lines, the
leftmost ones corresponding to the inner layers).

5

(a) Candidate Tracks. Suppose that the track finding stage outputs these tracks. Different colours
correspond to different tracks (hits in more than one track have mixed colours).

(b) Track Cleaning. The candidate tracks are submitted to a cleaning stage. If two tracks share too
many hits, one of them gets discarded. This is what happens to the pink track in panel 3a.

(c) Track selection. A final selection stage based on the quality of fit of the trajectories to the hits
permits eliminating some fake tracks (like the orange one in panels 3a and 3b). This final panel
represents the output of the track reconstruction.

Figure 3: The following stages of the Combinatorial Track Finder algorithm (continued from
Figure 2): track cleaning and track selection.

6

scales with input size. As is common in the theoretical analysis of algorithms, we will concern
ourselves with the asymptotic limit of arbitrarily large number of particles. We adopt the stan-
dard “big O” notation for asymptotic upper bounds. For two functions f and g from N to R
we say that f = O(g) if ∃c, n0 > 0 : ∀n, (n > n0 =⇒ f(n) < c · g(n)). We write f = Ω(g) if
g = O(f). We say that f = Θ(g) if f = O(g) and g = O(f). By “constant time”, we mean O(1).

For the analysis of the classical algorithms, we assume that we can access the coordinates of
a given hit in constant time. Moreover, simple arithmetic operations on the hit’s coordinates
are counted as taking O(1) time. In the context of the quantum algorithms we work in the
circuit model, measuring time as the number of quantum gates used. We further assume access
to a QRAM that is able to load classical data in coherent superposition in logarithmic time in
the number of memory cells [29, 30]. These choices represent the distinct standard practices in
classical/quantum algorithm analysis. To attenuate the differences in the computational models,
we present the results in Õ notation, that is, omitting the poly-logarithmic dependencies in the
complexities (for example, we say that

√
n log3 n = Õ(

√
n)).

Another difference between the classical and quantum scenarios is that all the presented
classical algorithms are deterministic, meaning that for a given input they will always output the
same answer. On the other hand, our quantum algorithms are probabilistic. That is, for a given
input, they output the correct answer with probability at least 1 − ε, where ε is some positive
constant.

3 The Combinatorial Track Finder

We present a simplified model of tracking. In what follows, we will omit several details that are
crucial in practice, but that do not significantly influence the complexity analysis. In Section 6,
we discuss some of our assumptions and the validity of our model.

Assumptions about the particles’ trajectories. Let n denote the number of charged par-
ticles present in the event record. Their trajectories originate from a fixed interaction region,
but we do not assume that they come from a single collision spot. The detector is immersed in
a quasi-uniform co-axial magnetic field, so we expect the particles to follow helical trajectories
aligned with the field’s direction. These trajectories can be described by five parameters [31]. Let
P ⊂ R5 be the five-dimensional cuboid corresponding to the trajectories’ parameter space. Each
experiment that produces a sequence of particle trajectories is governed by a physical process
that implicitly selects these parameters for each trajectory; in the forthcoming, we call this proce-
dure an event. We model this formally as a random variable π : Ω→ P that selects a parameter
with respect to a probability space (Ω,F , P) that accounts for various physical parameters, such
as noise, etc.. We make the mild assumption that π follows a probability distribution pπ on P
that is strictly positive. With our model, an event is generated by drawing n random samples
π1, . . . , πn, each following pπ (that is, we treat them as i.i.d. random variables).

Assumptions about the detector’s layers. The detector has a fixed geometry with a dis-
crete set of sensor layers. We consider that the detector has L cylindrical layers aligned with the
beam line. The layers are indexed from 0 to L − 1 (the most inner layers having the smallest
indices). We assume that each particle traverses every layer and that they never return to a
previously visited layer. We assume the layers to be continuous two-dimensional surfaces Cl,
l ∈ {0, . . . , L− 1}.

7

Assumptions about the hits’ data. As a particle traverses a layer, it leaves a complex signal
resulting from the interaction with the sensor’s pixels. We treat these signals simply as three-
dimensional points, called hits. We assume that the granularity of the sensors is high enough
such that each detected hit can be differentiated from other hits. Since each trajectory leaves
a unique hit on each layer l, formally we have a continuous map Hl : P → Cl, relating each
trajectory to its point of intersection with layer l. At every layer, we identify the hits by labels
from {0, . . . , n − 1}. We use the notation ml,j for the coordinates of jth hit in layer l. It is
possible that some hits are not measured at all due to sensor inefficiencies. That is, we do not
necessarily have a hit ml,j for every pair (l, j). This means that we may not be able to tell the
exact value of n directly from the event record, as it is possible that there is no layer registering
all particles. In that case, we would be indexing the hits with labels from {0, . . . , n∗ − 1}, where
n∗ is the largest number of hits measured in any layer. We consider that n∗ = n for simplicity,
but every result in this paper would hold the same as long as n∗ = Θ(n).

Under these assumptions, we expect the number of measured hits per layer to grow propor-
tionally to n. Moreover, we can establish the following useful lemma:

Lemma 1. For almost all events, given any fixed, open (non-empty) subset of any detector layer,
the number of hits in that subset grows as Θ(n).

Proof. The trajectories are determined by the parameters in P. If S ⊂ Cl is open and non-
empty, then US := H−1

l (S) ∈ P is open and non-empty and by assumption, the probability that
a trajectory has parameters in US is pS := pπ(US) > 0. If π1, . . . , πn are n random samples of
parameters drawn without replacement and following pπ, then the strong law of large numbers
implies that almost surely, the number of parameters sampled from US grows as Θ(n). Applying
Hl to this gives the growth of the number of hits in S.

For our complexity analysis we only consider the dependence on the variable n. Evidently,
the data in the event record also depends on quantities like the number of layers of the detector,
the granularity of the sensors, or the efficiency of the detectors. But these are fixed from the
experimental hardware and do not vary from event to event. On the other hand, we expect the
average n to grow as we increase the beam’s instantaneous luminosity. Thus, we believe n to be an
appropriate measure of the size of the input to the tracking problem. This simplification, relying
on some level of abstraction from the actual experiment, allows us to draw some conclusions on
the computational complexity of tracking, in particular on the complexity of the CTF algorithm.

We separate the analysis of the CTF algorithm into four stages2: seed generation (Section 3.1),
track finding (Section 3.2), track cleaning (Section 3.3), and track selection (Section 3.4). These
stages are executed sequentially, as each depends on the output of the previous one. Thus, each
of them contributes additively to the overall complexity.

3.1 Seed Generation

The purpose of this stage is to provide initial track candidates, formed by three hits, and their
trajectory parameters. The CTF algorithm generates seeds by choosing triplets of hits from
the three most inner layers – see Algorithm 1 for a pseudocode representation. Recall that we
are trying to fit the tracks into helices aligned with the detector axis. So, we cannot fix the five
parameters defining such helices with fewer than three points. Rigorously, in general three points
determine a countable family of such helices. If we assume that the trajectories do not realize

2For the readers familiar with [20], we warn that our division of the CTF algorithm into four stages is not the
same as in the original paper. We proceed this way for convenience of the complexity analysis.

8

“a full turn” between these points, this degeneracy is broken. However, then we do not have the
guarantee that there is an helix passing exactly through the three points. In practice, as there
are experimental uncertainties about the hits’ positions, this is not a concern.

Algorithm 1: Seed Generation

input : event record
output: seeds

1 foreach hit m0,j0 in layer 0 do
2 foreach hit m1,j1 in layer 1 do
3 foreach hit m2,j2 in layer 2 do
4 seed ← (m0,j0 ,m1,j1 ,m2,j2);
5 if seed is good then
6 add seed to output;

Because there are O(n) hits per layer, we immediately see that:

Theorem 2. Seed Generation (Algorithm 1) has complexity O(n3).

To limit the number of formed seeds, we require them to satisfy certain restrictions. Namely,
we require a minimum transverse momentum (which is proportional to the radius of the projected
trajectory onto the transversal plane) and maximum transverse and longitudinal distances of the
point of closest approach to the presumed beam-spot. Nevertheless, these constraints do not
change the complexity. Indeed, each pair of hits in the first two layers determines an area in the
third layer where an acceptable seed with these hits could be found – see Figure 4. According to
Lemma 1, in the worst-case scenario for any fixed area in a sensor we may have Θ(n) hits. So,
we have to admit that we may form O(n2 · n) seeds. In summary,

Lemma 3. In the worst-case scenario there are Ω(n3) good seeds (that is, Algorithm 1 is optimal
for seed generation).

3.2 Track Finding

The track finding stage extrapolates the seeds’ trajectories along the expected path of the particle
and builds track candidates by adding compatible hits from successive detector layers, updating
the parameters at each layer (see Figure 2b). More precisely, the track finding strategy is based
on the combinatorial Kalman filter [22], which is an adaptation of the Kalman filter [32] for
tracking problems. We now describe this method.

Say that a trajectory at layer l − 1 is described by a five vector pl−1. The propagated state
vector pl at next layer is modelled by the system equation

pl = Flpl−1 + wl. (1)

Fl, known as the process matrix, describes the propagation of a charged particle in a uniform
magnetic field from layer l−1 to l. wl is a random variable called process noise. A measurement
ml at layer l is given by

ml = Hlpl−1 + el, (2)

where Hl is the measurement matrix and el is the measurement noise. We assume that we know
the covariance matrices for the process and measurement noises. Note that, in general, we could

9

Figure 4: Seed Generation. The dotted grey lines represent the first three detector layers
(transversal view). The yellow region around the beam axis (the black dot) is the region where
we admit the collisions may occur. In this illustration, we are forming a seed with the two hits
from the inner layers marked in red. For any hit in the third layer (orange circles) to be included
in this seed, it must belong the green region. This is the region where the trajectories that
respect the seeding criteria and that pass through the two red hits cross. In blue we draw two
trajectories originating from the outer edge of the collision region.

replace equations (1) and (2) by non-linear relations. But the linear model usually suits the
purpose of track reconstruction.

Suppose that we have built a track up to layer l − 1 with the measurements (i.e., hits)
m0,j0 ,m1,j1 , . . . ,ml−1,jl−1

. With this information, we describe our prediction of the trajectory
at this layer by a state vector pl−1|l−1 and corresponding covariance matrix. Without knowing
which hit from layer l belongs to this track, we predict that the state vector at layer l is

pl|l−1 = Flpl−1|l−1. (3)

We say that the predicted measurement at layer l is

ml|l−1 = Hlpl|l−1. (4)

This would be the location of the lth hit if we had perfect knowledge of the trajectory and there
were no process/measurement errors. In reality, we do not expect to find any hit exactly at
this predicted measurement. When considering an actual measurement ml,j , we say that the
predicted residual is

rl|l−1 (ml,j) = ml,j −ml|l−1 (5)

The predicted χ2 value is defined as

χ2
l|l−1 (ml,j) = rl|l−1 (ml,j)

T
R−1
l|l−1rl|l−1 (ml,j) , (6)

where Rl|l−1 is the covariance matrix of the predicted residual. Intuitively, a high χ2 value tells
us that the measurement is unlikely to belong to the track. Then, when evaluating which hit to
add to the track, only the ones whose predicted χ2 value is below some fixed threshold χ2

0 pass

10

to the filtering phase. Suppose that ml,j satisfies this criterion. Based on this measurement, we
update the state vector prediction to

pl|l = pl|l−1 + Klrl|l−1 (ml,j) , (7)

where Kl is the Kalman gain matrix, which is calculated based on the covariance matrices of
state vector, the process noise and the measurement noise (see [22] for explicit expression). We
say that the filtered residual for this measurement is

rl|l (ml,j) = ml,j −Hlpl|l. (8)

The filtered χ2 value is

χ2
l|l (ml,j) = rl|l (ml,j)

T
R−1
l|l rl|l (ml,j) , (9)

Rl|l being the covariance matrix of the filtered residual. One can show that the predicted and
filtered χ2 values are actually identical (see [22]), that is,

χ2
l|l−1 (ml) = χ2

l|l (ml) ,∀ml ∈ R3 . (10)

This means that we can determine the filtered χ2 value without explicitly updating the trajectory.
The total χ2 value of the track at layer l is the sum of the filtered (or predicted) χ2 values from
all previously visited layers

χ2
≤l(m0,j0 , . . . ,ml,jl) =

l∑
i=0

χ2
i|i(mi,ji). (11)

In general, we may have several hits passing to the filtering phase. As we are not sure which
one truly belongs to the track, we form new candidate tracks each including a different hit.
These tracks are then followed independently. Also, to accommodate the possibility of detection
inefficiencies the CTF permits adding a “ghost hit” if no suitable hit is found. However, to avoid
a rapid increase in the number of tracks, we impose a limit of λ tracks retained at each step (the
default in [20] being λ = 5). If at any point this limit is surpassed, we abandon the worst tracks.
To decide this, each track candidate is attributed a quality score ql of the form

ql = l −mghost − ω · χ2
≤l, (12)

where mghost is the number of ghost hits included in the track and ω is some configurable weight
(we omitted the dependence on the measurements). At any step we can discard a candidate track
if it contains too many ghost hits or the total χ2 value exceeds a given threshold. Otherwise, the
procedure is continued until the end of the detector is reached (that is, we arrive at l = L− 1).
The quality score (12) at that point is said to be the quality score of the track candidate. The
tracks that reach this step are accepted for the next stage of the CTF algorithm. For a summary
description of track finding see Algorithm 2.

Before evaluating the complexity of the finding stage, it is important to understand how
many candidate hits pass to the filtering phase. The space of points with acceptable predicted
χ2 value (equation (6))

{ml ∈ R3 : χ2
l|l−1 (ml) < χ2

0} (13)

is an ellipsoid around the predicted measurement. The intersection of this ellipsoid with the
layer’s surface yields a region in that layer whose area is independent of n. By Lemma 1, we
may find Θ(n) hits in that region. Therefore,

11

Algorithm 2: Track Finding

input : seeds, generated by Algorithm 1; event record
output: candidate tracks

1 foreach seed do
2 initialize empty list candidate tracks;
3 estimate initial state vector p2|2 and quality factor q2 for seed;
4 add (seed, p2|2, q2) to candidate tracks;
5 foreach layer l from 3 to L− 1 do
6 foreach (track, pl−1|l−1, ql−1) in candidate tracks do
7 evaluate predicted measurement ml|l−1;
8 foreach hit ml,j in layer l do
9 if χ2

l|l−1(ml,j) < χ2
0 then

10 new track ← track + ml,j ;
11 form new candidate track for seed with ml,j ;
12 evaluate pl|l and quality factor ql for new track;
13 add (new track, pl|l, ql) to candidate tracks;

14 if there is no hit ml,j in layer l such that χ2
l|l−1(ml,j) < χ2

0 then

15 new track ← track + ml|l−1; /* ghost hit */

16 evaluate pl|l and quality factor ql for new track;
17 add (new track, pl|l, ql) to candidate tracks;

18 remove (track, pl−1|l−1, ql−1) from candidate tracks;

19 select the best λ tracks of candidate tracks ; /* sorting by ql */

20 add elements of candidate tracks to output;

12

Lemma 4. The filtering step takes O(n) time.

Starting from a single seed, we only propagate up to λ = O(1) tracks from layer to layer.
For each of these, the analytical continuation of the trajectory from one layer to another (equa-
tions (3) and (4)) is performed in O(1) time. As we have seen with Lemma 4, performing filtering
requires O(n) time per track candidate. Finally, in O(n) time we can determine the λ tracks
with best quality score (12) that are propagated to the next layer. The number of layers L is
O(1). Thus, we arrive at

Theorem 5. Track Finding (Algorithm 2) has complexity O(kseed ·n), where kseed is the number
of seeds that were formed in seed generation stage.

3.3 Track Cleaning

With the method described so far we may find multiple tracks corresponding to the same particle,
either starting from different seeds, or when a given seed develops into more than one track. To
avoid this, the cleaning stage calculates the fraction of shared hits between all pairs of track
candidates

Nhits
shared

min
(
Nhits

1 , Nhits
2

) , (14)

where Nhits
1 (Nhits

2) is the number of hits used in forming the first (second) track and Nhits
shared

is the number shared hits between the two tracks. If for any pair this fraction exceeds a fixed
threshold value, the worst track (i.e., the one with lowest quality score) gets discarded. This is
represented in Algorithm 3.

Algorithm 3: Track Cleaning

input : candidate tracks, generated by Algorithm 2
output: cleaned candidate tracks

1 foreach track1 in candidate tracks do
2 foreach track2 (different from track1) in candidate tracks do
3 if track1 and track2 share more than allowed fraction of hits then
4 remove the one with lowest quality score from the set of candidate tracks;

5 output remaining candidate tracks;

We see that

Theorem 6. Track Cleaning (Algorithm 3) has complexity O(k2
find), where kfind is the number

of track candidates that were formed in the track finding stage.

3.4 Track Selection

For each candidate track, the track finding stage has yielded a collection of hits and an estimate
of the track parameters. However, the full information about the trajectory is only available at
the final hit of the track (when all hits are known). To avoid biases and obtain a more precise
fit, the trajectories are refitted using a Kalman smoother. Finally, the CTF outputs the tracks
whose quality score (updated after the smoothing step) is above some configurable threshold.
We summarize this stage in Algorithm 4.

13

Algorithm 4: Track Selection

input : candidate tracks, cleaned by Algorithm 3
output: final reconstructed tracks

1 foreach track in candidate tracks do
2 refit the trajectory of track applying Kalman smoother;
3 calculate new quality score of track;
4 if quality score of track < threshold then
5 remove track from the set of candidate tracks;

6 output remaining candidate tracks;

We do not describe the Kalman smoother method in detail here, since for the purposes of our
complexity analysis it is enough to know is that each candidate track is processed independently
of all the others (for more information see the original reference [20]). Then, we have

Theorem 7. Track Selection (Algorithm 4) has complexity O(kclean), where kclean is the number
of tracks that passed the cleaning stage.

3.5 Complexity of the CTF Algorithm

Combining the four stages, we find that the full CTF algorithm has complexity

O(n3 + kseedn+ k2
find + kclean), (15)

recalling that n denotes the number of tracks in the event record and kseed, kfind, and kclean are
the number of tracks that passed the seeding, finding and cleaning stages, respectively.

As we have seen in Section 3.1, it is consistent with our model that in the worst-case scenario
the number of seeds kseed that we generate scales like n3. Similarly, we cannot exclude the case
where kfind = Θ(n3). If the allowed fraction of shared hit is large enough, the cleaning stage may
not eliminate any track at all. So, kclean may also scale like n3. Taking all this into account, we
conclude that

Theorem 8. The CTF (the sequence of Algorithms 1, 2, 3, and 4) has complexity

O(n3 + kseedn+ k2
find) = O(n6). (16)

4 A Classical Improvement for Track Cleaning

The track cleaning algorithm presented in Section 3.3 compares every pair of tracks coming from
the finding stage. This approach does not take into account any structure of the tracks. Indeed,
it would work the same if instead of calculating the fraction of shared hits we were calling a black
box that outputted “clean/not clean” when given two tracks. We now present a different way to
do track cleaning that takes better advantage of the structure of the problem.

We begin by describing the case where all the candidate tracks have L hits, that is, each
candidate track contains exactly one hit per layer. Then, each candidate track can be uniquely
identified with a vector in {0, . . . , n− 1}L. As an example, if L = 4 and a given track t contains
the zeroth hit from the first layer, the second hit from the second layer, the fourth hit from the
third layer, and the fourth hit from the fourth layer, its corresponding track vector is (0, 2, 4, 4).
With f being the maximum allowed fraction of shared hits, define r = dfLe. We say a vector

14

Figure 5: Track Cleaning with r-tuples tree. For this example, the first three elements of the
sorted list of track vectors are t1 = (0, 1, 2, 1), t2 = (2, 0, 3, 0), and t3 = (0, 1, 3, 3). Suppose we
want to exclude tracks that share two or more hits. We have build a red-black tree with the
2-tuples of t1 and t2 (blue and green circles, respectively). The line of the circles is red or black
according to the colour of the corresponding node (see [33] for construction of red-black trees).
In this illustration, we are searching for 2-tuples of t3 in the tree. We see that 2-tuple (0, 1, ,)
is already present in the tree – the path with orange leads to a node with that 2-tuple. So, t3 is
not going to be included in the output.

of length L is an r-tuple of a track if it is equal to the track vector at r entries and contains
the symbol “ ” at the others. For example, (0, 2, ,) and (0, , 4,) are 2-tuples of the track t
mentioned above. Note that there are

(
L
r

)
= O(1) such r-tuples. Two tracks exceed the allowed

fraction of shared hits if and only if they have (at least) r hits in common, that is, if they have
a matching r-tuple.

The algorithm starts by sorting the candidate tracks by quality score. This way, if we need
to discard one of two tracks we choose the one that is further down the list. We then iterate over
the sorted tracks. Evidently, the first track t1 is going to be included in the output. We create a
self-balancing binary search tree T (like a red-black tree – see, for example, [33]) containing all of
the r-tuples of t1 (with some induced order on the r-tuples). We then move to the second track
in the list t2. For every r-tuple of t2, we search for a match in the tree T . If we do not find any,
we insert all of t2’s r-tuples into T and we add t2 to the output. Otherwise, t2 is not included in
the output and we leave the tree unchanged. We repeat this procedure for the remaining tracks.
In the end, the output contains all the desired tracks. See Figure 5 for an illustration of the
algorithm.

With each accepted track only
(
L
r

)
= O(1) elements are inserted in T . Since kfind can-

didate tracks reach the cleaning stage, the size of the tree never exceeds O(kfind). So, we
guarantee O(log kfind) complexity for the search and insertion tasks. This means that we only
spend O(log kfind) time per candidate track. Overall, our cleaning algorithm has complexity
O(kfind log kfind).

To generalize this to the case of varied number of hits per track, note that we can only find
up to L = O(1) different track sizes. Let R = dfLe. We initialize R2 empty balanced binary

15

search trees Ti,j for i, j ∈ { 1, 2, . . . , R }. The first track t1 is immediately included in the output.
Say it has L1 hits and let r1 = dfL1e. We insert all of the r-tuples of t1 for r ≤ r1 into Tr,r1 .
Let the second track t2 have size L2 and r2 = dfm2e. There are two cases to consider when two
tracks share more than min(r1, r2) hits:

(a) r1 ≤ r2: the overlapping tuples are represented in Tr1,r1 . Searching all trees Tr,r for r ≤ r2

will reveal the overlap.

(b) r1 > r2: the overlapping tuples are represented in Tr2,r1 . Searching all trees Tr2,r for r > r2

will reveal the overlap.

If we do not find any match, we insert all of the r-tuples of t2 for r ≤ r2 into Tr,r2 and add t2
to the output. Repeating this for all tracks will guarantee that there are no two tracks ti and tj
in the output sharing more than min(ri, rj) hits. We write down our improved version of track
cleaning in Algorithm 5.

Algorithm 5: Improved Track Cleaning

input : candidate tracks, generated by Algorithm 2
output: cleaned candidate tracks

1 sort candidate tracks by quality score;
2 set R = dfLe;
3 initialize empty trees Ti,j for i, j ∈ {1, . . . , R};
4 foreach track in candidate track do
5 set r = dfLe, where L is number of hits of track;
6 for r′ from 1 to r do
7 foreach r′-tuple of track do
8 if r′-tuple is in Tr′,r′ then
9 remove track from set of candidate tracks;

10 for r′ from r to R do
11 foreach r-tuple of track do
12 if r-tuple is in Tr,r′ then
13 remove track from set of candidate tracks;

14 if track has not been removed then
15 for r′ from 1 to r do
16 foreach r′-tuple of track do
17 insert r′-tuple into tree Tr′,r;

18 output remaining candidate tracks;

Like before, for each accepted candidate track the number of tuples inserted into the cor-
responding search tree s bounded by

(
L
r

)
= O(1). Therefore, no tree will contain more than

O(kfind) elements, and the search and insert operations can always be performed in O(log kfind)
time. Since there are R2 = O(1) trees, we spend O(log kfind) per track candidate. We conclude
that

Theorem 9. Algorithm 5 performs the task of track cleaning (Algorithm 3) in Õ(kfind) time.

Considering this version of track cleaning, the complexity of the CTF becomes dominated by the
finding stage. We find that

16

Theorem 10. The improved CTF (the sequence of Algorithms 1, 2, 5, and 4) has complexity

O(n3 + nkseed) = O(n4). (17)

5 Quantum Algorithms for Track Reconstruction

5.1 Seed Generation with Quantum Search

We have seen in Section 3.1 that the CTF’s seed generation stage takes O(n3) time (Theorem 2).
We have also shown that Algorithm 1 is optimal, as in the worst-case scenario we may need to
output Θ(n3) seeds (Lemma 3). The complexity of Algorithm 1 is independent of how many
seeds are actually formed. In contrast, here we show how quantum computers can reach a lower
complexity if kseed, the number of seeds, is O(na) for a < 3.

According to the QRAM model, we assume access to a unitary Q acting as

Q |l, j〉 |x〉 = |l, j〉 |x⊕ml,j〉 , (18)

where |ml,j〉 is a computational basis quantum state encoding the coordinates of the jth hit of
layer l. We assume that the QRAM access, Q, runs in O(log n) time. If the index j does not
correspond to a hit (there may be fewer than n detections per layer), then |ml,j〉 holds a flag
indicating so. Given a superposition

∑
l,j αl,j |l, j〉 |0〉, applying Q loads the hits’ data coherently

Q

∑
l,j

αl,j |l, j〉 |0〉

 =
∑
l,j

αl,j |l, j〉 |ml,j〉 . (19)

We consider a unitary transformation Useed that recognizes if a hit triplet forms a valid seed:

Useed |m0,j0 ,m1,j1 ,m2,j2〉 =


− |m0,j0 ,m1,j1 ,m2,j2〉 , if (m0,j0 ,m1,j1 ,m2,j2)

passes the seeding stage

+ |m0,j0 ,m1,j1 ,m2,j2〉 , otherwise.

(20)

Since any classical computation can be simulated by a quantum computer [34], this is clearly
possible. Moreover, because we can recognize if a hit triplet constitutes a valid seed with a
O(1)-sized circuit, we can also build a quantum circuit for Useed using O(1) gates. Using Useed

and Q, it is straightforward to form a unitary transformation Oseed acting on {|0〉 , |1〉}⊗3 logn

(possibly along some ancillary qubits) that marks the state |j0, j1, j2〉 if the corresponding hit
triplet constitutes a good seed:

Oseed |j0, j1, j2〉 =

{
− |j0, j1, j2〉 , if (m0,j0 ,m1,j1 ,m2,j2) passes the seeding stage

+ |j0, j1, j2〉 , otherwise.
(21)

If any of the indices (0, j0), (1, j1) or (2, j2) does not correspond to a hit, we assume that Oseed

leaves the state |j0, j1, j2〉 unchanged. We can run the circuit for Oseed in O(log(n)) time.
We start by preparing all triplets in superposition. For simplicity, we assume that n is a power

of two. Starting from the all-zero state, we can do this by applying 3 log n parallel single-qubit
Hadamard gates (also known as the Walsh-Hadamard transform, which we denote by H). Now
define θ and m as

θ = arcsin

(√
kseed

n3

)
, m =

⌊ π
4θ

⌋
, (22)

17

and let G be the unitary transformation

G = H · (2 |0〉 〈0| − I) ·H ·Oseed. (23)

From Grover’s algorithm,

Theorem 11 (Grover’s Search [35, 36]). Let m and G be defined as in (22) and (23), respectively.
Then, if we measure the state

Gm ·

 1√
n3

n−1∑
j0,j1,j2=0

|j0, j1, j2〉

 (24)

in the computational basis we will find a good seed (i.e., a triplet (j0, j1, j2) such that (m0,j0 ,
m1,j1 ,m2,j2) passes the seeding stage) with probability at least 1/2.

Preparing the state (24) involves calling the operator G m = O(
√
n3/kseed) times, repre-

senting a complexity advantage over what we could do classically. Note, however, that applying
Grover’s algorithm requires determining m, which we cannot do since we do not know a priori
what is the value of kseed. For that purpose, we can use the quantum counting algorithm of
Brassard, Høyer, and Tapp [37].

Theorem 12 (Quantum Counting [37]). There is a quantum algorithm (call it QCount(G))
that outputs kseed with probability at least 3/4, using an expected number of O(

√
n3kseed) calls to

G.

Combining these techniques, we propose performing seed generation with Algorithm 6.

Algorithm 6: Seed Generation with Quantum Search.

input : event record
output: seeds

1 k̃ ← QCount(G) ;

2 set m as in equation (22), with k̃ as an estimate for kseed;

3 while we have not found k̃ good seeds do
4 prepare and measure state (24);
5 if outcome j0, j1, j2 corresponds to a good seed then
6 add (m0,j0 ,m1,j1 ,m2,j2) to output;

Theorem 13. Algorithm 6 finds all good seeds with probability at least 1/2, using an expected
time Õ(

√
n3 · kseed) .

Proof. Assume that quantum counting succeeds, that is, we have correctly estimated k̃ = kseed

in step 1 in Õ(
√
n3kseed) time. The probability of sampling a new good seed in step 4 after

having already found k of them is (Theorem 11)

1

2

kseed − k
kseed

. (25)

Then, determining the expected time to find all good seeds is equivalent to the coupon collector’s
problem. In particular, the probability that we run step 4 more than 10kseed log kseed times is less

18

than 1/4. That is, with probability at least 3/4 we spend Õ(
√
n3 · kseed) time on loop 3-6. Since

quantum counting succeeds with probability at least 3/4 (Theorem 12), Algorithm 6 outputs all
seeds in Õ(

√
n3 · kseed) time with probability no less than 1/2.

If kseed = O(na), then we can perform seed generation up to bounded error with complexity

Õ
(
n

3+a
2

)
. (26)

In the worst-case scenario, this shows no advantage over the classical algorithm (as is expected
from Lemma 3). But for any a < 3 we reach a lower complexity than the classical seeding
(Theorem 1). Considering the overall CTF algorithm (Theorem 10), we find a quantum advantage
when a < 2. We establish that

Lemma 14. The improved CTF algorithm with quantum seed generation (the sequence of Algo-
rithms 6, 2, 5 and 4) has complexity Õ

(√
n3kseed + nkseed

)
. In particular, if kseed = O(na) with

a < 2 this becomes Õ (nkseed), beating the O(n3) complexity of classical version (the sequence of
Algorithms 1, 2, 5 and 4).

5.2 Track Finding with a Quantum Minimum Finding

As we have seen, in the worst-case scenario the seeding and selection stages are optimal. With
the improved strategy of Section 4 the cleaning stage is also optimal up to a logarithmic factor.
So, the track finding stage is the one with most room for speedup in the worst-case scenario.
More specifically, we have seen that O(n) hits undergo the filtering step, while only at most
λ = O(1) of them form new track candidates (see Lemma 4). In this Section, we show how
quantum search permits performing filtering with complexity of Õ(

√
n).

Suppose that we have followed a track up to layer l−1 according to the track finding method
described in Section 3.2. In particular, we have evaluated the predicted state vector and cor-
responding covariance matrix. Based on this information, we can calculate predicted χ2 value
(equation (6)) for any measurement in layer l in O(1) time. Let Oχ be a unitary transforma-
tion that, given the index of a measurement, calculates the predicted χ2 value of adding that
measurement to the track:

Oχ |l, j〉 |x〉 = |l, j〉 |x⊕ χ2
l|l−1(ml,j)〉 . (27)

Similarly to the situation in the Section 5.1, we can build a quantum circuit for Oχ using the
classical circuit to compute the predicted χ2 value and the QRAM operator Q, requiring a total
of O(log n) gates. Using Oχ we can build a quantum circuit Ofind that marks a state |l, j〉 |y〉 if
χ2
l|l−1(ml,j) is smaller than the threshold y

Ofind |l, j〉 |y〉 =

{
− |l, j〉 |y〉 , if χ2

l|l−1(ml,j) < y

+ |l, j〉 |y〉 , otherwise.
(28)

By the quantum minimum finding algorithm of Dürr and Høyer [26], we can find the measurement
ml,j that minimizes χ2

l|l−1 with O(
√
n) calls to Ofind – see Algorithm 7.

Theorem 15 (Quantum Minimum Finding [36]). If there is a measurement ml,j such that
χ2
l|l−1(ml,j) < χ2

0, Algorithm 7 finds the measurement that minimizes χ2
l|l−1 with probability at

least 1/2 in Õ(
√
n) time.

19

Algorithm 7: Quantum Minimum Finding.

input : prediction of track’s state vector at layer l − 1
output: j such that ml,j that minimizes χ2

l|l−1

1 initialize j0 ← empty;
2 set y ← χ2

0;
3 while Ofind has been called less than 22.5

√
n times do

4 apply quantum exponential searching algorithm of [36] with initial state(
1√
n

∑n
j=0 |l, j〉

)
· |y〉 and with Ofind as oracle;

5 if we find an state |l, j〉 such that χ2
l|l−1(ml,j) < y then

6 set j0 ← j;
7 set y ← χ2

l|l−1(ml,j);

8 if j0 is not empty then
9 return ml,j0

10 else
11 return “no good measurement”

With this result, our strategy for track finding becomes the following. Starting from a single
seed, we do track finding by propagating up to λ tracks from layer to layer. For each of these
tracks, we apply quantum minimum finding λ times to find the λ measurements with lowest
predicted χ2 value (after we have found a minimum of χ2

l|l−1 we can arbitrarily increase the

χ2 value of that measurement to ensure that we do not find it again in the following run of
quantum minimum finding). Out of the up to λ2 resulting track candidates, we select the λ
ones with best quality score and continue propagating those. Note that this implies applying
quantum minimum finding up to Lλ2n3 times, which means that the probability of correctly
reproducing the result of the classical track finding decreases with n. Fortunately, we can make
the probability of success bounded by always repeating the quantum minimum finding routine
O(log n) times. We propose doing track finding as in Algorithm 8.

Theorem 16. Algorithm 8 replicates the output of Track Finding (Algorithm 2) with probability
at least 1/2 in Õ(kseed ·

√
n) time.

Proof. In Algorithm 8, instead of looping over the candidate measurements at each layer (line 8
in Algorithm 2), we find the best measurements with a quantum minimum finding routine. We
stop after having selected λ measurements per candidate track as we know that only up to λ
tracks are kept at each layer (per seed). Each run of quantum minimum finding takes Õ(

√
n)

time – Theorem 15. So, the result holds as long as we show that the probability of success is
bounded by 1/2. The probability that we fail to select the best available measurement in steps
9-10 is upper bounded by

1

3Lλ2n3
. (29)

Then, the probability that we do not fail any of the Lλ2n3 times we run steps 9-10 is lower
bounded by (

1− 1

3Lλ2n3

)Lλ2n3

≥ 2

3
. (30)

20

Algorithm 8: Quantum Track Finding.

input : seeds, generated by Algorithm 1; event record
output: candidate tracks

1 foreach seed do
2 initialize empty list candidate tracks;
3 estimate initial state vector p2|2 and quality factor q2 for seed;
4 add (seed, p2|2, q2) to candidate tracks;
5 foreach layer l from 3 to L− 1 do
6 foreach (track, pl−1|l−1, ql−1) in candidate tracks do
7 evaluate predicted measurement ml|l−1;
8 for i from 1 to λ do
9 run quantum minimum finding (Algorithm 7) log

(
3Lλ2n3

)
times

(increasing the χ2 value of already used hits so not to find them again) ;
10 from the samples of step 9, select the measurement ml,j with lowest χ2

l|l−1

;
11 if χ2

l|l−1(ml,j) < χ2
0 then

12 new track ← track + ml,j ;
13 form new candidate track for seed with ml,j ;
14 evaluate pl|l and quality factor ql for new track;
15 add (new track, pl|l, ql) to candidate tracks;

16 if no new candidate track was formed then
17 new track ← track + ml|l−1; /* ghost hit */

18 evaluate pl|l and quality factor ql for new track;
19 add (new track, pl|l, ql) to candidate tracks;

20 remove (track, pl−1|l−1, ql−1) from candidate tracks;

21 select the best λ tracks of candidate tracks ; /* sorting by ql */

22 add elements of candidate tracks to output;

21

In the worst-case scenario kseed scales as n3 (Lemma 3), so Algorithm 8 has complexity
Õ
(
n3.5

)
. Comparing with the classical case (Theorem 10), we see in this scenario a

√
n quantum

advantage is the best we can achieve (again, omitting poly-logarithmic factors). If we combine
Algorithm 8 with the quantum seed generation algorithm developed in Section 5.1 (Algorithm 6),
we get a more general result that also depends on the number of formed seeds, kseed. Namely,
we establish:

Theorem 17. The improved CTF algorithm with quantum track finding (the sequence of Algo-
rithms 1, 8, 5 and 4) has complexity

Õ
(√

n3kseed +
√
nkseed

)
= Õ

(
n3.5

)
. (31)

This beats the classical version (the sequence of Algorithms 1, 2, 5 and 4).

5.3 Reconstructing Tracks in Superposition

We saw in Section 3.5 that the size of the output (kclean) may scale like n3. For a fixed quality
threshold in the selection stage, we have no guarantee that we will filter most of the candidates.
In this section, we introduce a promise that the CTF only outputs O(n) tracks. Intuitively, this
promise means that the CTF can be applied in the asymptotic regime while keeping a constant
fraction of fake tracks, i.e., tracks that do not correspond to a real charged particle. Although
we do not have a natural way to guarantee this within our model (that is why we formulate it as
a promise), we point out that, in practice, particle physicists empirically adjust the parameters
of the tracking software according to the luminosity regime to obtain a reasonable fake track
rate for most events. We will show how we can exploit this promise to construct a quantum
algorithm with Õ(n3) complexity.

The promise that only O(n) tracks are to be found among O(n3) track candidates suggests
the use of quantum search, as in Section 5.1. This is complicated for two reasons: (a) track
finding (Section 3.2) in CTF forgets information by selecting only some track candidates in each
layer, i.e., it is not reversible, while quantum search relies on unitary transformations that are
reversible; (b) track cleaning (Sections 3.3 and 4) for each track candidate depends on information
about other tracks. To rectify point (a) we apply the principle of deferred measurements [34] to
create a sequence of unitary transformations that mimic the CTF algorithm. To rectify point (b)
we adapt the improved track cleaning from Section 4.

To construct the unitary transformations used in quantum search, we first slightly adjust the
steps in the classical CTF track finding algorithm (Algorithm 2). For a given seed, CTF selects
up to λ track candidates in each layer to propagate to the next layer. If fewer track candidates
have acceptable χ2 value, fewer than λ track candidates are formed. Here we form exactly λ new
track candidates for every given track candidate. If there is at least one hit with χ2

l (ml,j) < χ2
0,

we use λ hits with the lowest χ2 values to build the new track candidates. If there is no such hit,
we use one ghost hit and λ−1 hits with the lowest χ2 values. We also build tracks for all triplets
in the seeding layer. This would add substantial unnecessary work in the classical case, but does
not add complexity if performed in quantum superposition. As in other sections, we can add
placeholder hits to ensure that each layer has exactly n hits and all tracks traverse through all
L layers. Thus at the end of the track finding phase we have exactly λLn3 track candidates.

Based on the modified algorithm we construct a family of unitary transformations Ui that
perform seeding, track finding, cleaning and selection in superposition with the following effect:

Ui |0〉 =

√
1− ε
λLn3

ki−1∑
j=0

|ψj〉 |−qL−1,j〉+

λLn3−1∑
j=ki

|ψj〉 |+∞〉

+
√
ε |ψε〉 |+∞〉 . (32)

22

Here |ψ0〉 , |ψ1〉 , . . . , |ψki−1〉 are the computational basis states encoding track candidates that
(a) the classical CTF algorithm would output after the track finding stage and (b) do not share
too many hits with the i tracks already added to the output (Section 4). qL−1,j is the quality
score (12) at the last layer of the track encoded in ψj . We consider −qL−1,j to formulate the task
as a minimization problem. The computational basis states |ψki〉 , |ψki+1〉 , . . . , |ψλLn3−1〉 encode
some track candidates that do not pass (a) or (b). Note that the tracks that were previously
sampled belong to this set of states. “+∞” is a large positive value, so the minimum finding
gives answers only in the useful subset of the entangled computational basis states. |ψε〉 is
some arbitrary quantum state, and ε is the error probability of Ui, i.e., the probability that the
measurement of Ui |0〉 would produce a result other than one of ψ0, ψ1, . . . , ψλLn3−1.

Next we show that such a family of unitary transformations can indeed be constructed.
We first consider track finding (Lemma 18) and track cleaning (Lemma 19) sub-procedures.
Track finding prepares an equal superposition over the λLn3 track candidates with an additional
arbitrary quantum state (33) representing the error probability of the algorithm. Selection of
the kfind track candidates of the original CTF after track finding step is subsumed by the track
selection stage (Theorem 20).

Lemma 18 (Track finding in superposition). There exists a unitary transformation Ufind (33)
that performs track finding in Õ(

√
n) time in superposition.

Ufind |0〉 =

√
1− ε
λLn3

λLn3−1∑
j=0

|ψj〉+
√
ε |ψε〉 (33)

Proof. Preparing an equal superposition over all the possible seed triplets, i.e., seeding (implicit in
Ufind), can be done in Õ(1) time with the Walsh-Hadamard transform. We saw in Section 5.2 that
we can perform track finding for one seed in Õ(

√
n) time with constant probability. However, both

quantum minimum finding and its sub-procedure – quantum exponential searching algorithm –
use measurements. While we cannot use measurements in our unitary transformations Ufind, we
can apply the principle of deferred measurements [34]. Whenever the algorithm in Section 5.2
performs a measurement, we can instead perform CNOT operations on an ancillary register.
When the algorithm conditions a quantum operation on a measurement result, we can perform a
controlled operation with the ancillary register as the control. The probability (1− ε) to get the
desired result based on measurements during the procedure or by deferring the measurement is
the same. We can replicate the randomness in the quantum exponential searching algorithm [36]
by conditioning operations on the equal superposition of the allowed values { 0, 1, . . . ,m }, where
m is an arbitrary integer. By conditioning on the digits of the binary representation of these
values, as in quantum counting [37], we can ensure that we only need O(m) such operations and
the asymptotic computational complexity of quantum exponential searching algorithm remains
unchanged (up to constant factors).

One issue with this approach is that both the number of iterations of the outer loop of
the quantum minimum finding (Algorithm 7) and the time complexity of its sub-procedure –
quantum exponential searching [36] – may be proportional to

√
n. In the classical algorithm, if

the quantum exponential searching takes more time, we can limit the number of iterations of
the outer loop to ensure running time Õ(

√
n). In the quantum circuit we need to account for

the worst case number of iterations in the main loop and the worst-case running time in the
sub-procedure. This requires more than Õ(

√
n) gates. However, we can set a hard limit on the

number of iterations of the main loop. Since the expected size of the search space decreases
by more than a half with each iteration of the outer loop, the expected number of iterations to
reach the minimum is less than log n+ 1. If we limit the number of iterations of the outer loop

23

to c(log n + 1) for some constant c, then by Markov’s inequality the probability that we have
not reached the minimum is less than 1/c. Since it is still upper-bounded by a constant, the rest
of the analysis does not change. The limit on the number of iterations also implies a limit on
the number of measurements and the required number of ancillary registers to account for the
measurements in the quantum procedure.

Lemma 19 (Track cleaning in superposition). There exists a unitary transformation that runs
in Õ(1) time and marks the track candidates that do not share any r-tuple of hits with any track
already added to the output.

Proof. We have assumed that all particles traverse all layers, so all tracks are of length L and
are allowed to share up to exactly r hits for some value of r. As in Section 4, we can generalize
it to variable length tracks with a constant factor increase in complexity. Like in the classical
case, we can test whether an r-tuple has already been added to the tree T with O(log n) queries
to QRAM storing the values of the nodes of tree T . Thus each track can be associated with a
list of

(
L
r

)
binary values indicating if an r-tuple has already been added to the output in Õ(1)

time. Testing whether any of these values is equal to 1 requires O(1) gates. Hence the total time
required to mark the necessary track candidates is Õ(1).

Lemma 20. Each unitary transformation Ui (32) can be built to run in time Õ(
√
n).

Proof. We already saw that track finding requires Õ(
√
n) time (Lemma 18) and testing, whether

a track overlaps with any already added to the output takes Õ(1) time (Lemma 19). Procedures
necessary for track selection – marking the tracks that pass the track finding stage in CTF,
refitting, recalculating the score and comparing to a threshold value – depend on a constant
number of fixed-precision numbers, and hence can be done in Õ(1) time. So the time complexity
of Ui is dominated by the track finding and is Õ(

√
n).

We will now describe how we can use transformations Ui with quantum minimum finding to
reconstruct the tracks one-by-one (Algorithm 9). We will search for ψ∗i = arg minQi(ψ), where
Qi(ψ) is the score encoded in the second register of Ui |0〉 (32). The time complexity of the
quantum minimum finding [26] remains the same (up to constant factors) if instead of quantum
exponential searching [36] we use amplitude amplification (Theorem 21).

Theorem 21 (Amplitude amplification [38]). Let A be any quantum algorithm that uses no
measurements, and let a denote the initial success probability of A. There exists a quantum
algorithm that finds a good solution using an expected number of applications of A and A−1

which are in Θ(1/
√
a) if a > 0, and otherwise runs forever.

Let a be the probability to find ψ∗i (or any specific track encoded in {ψ0, ψ1, . . . , ψki−1 })
by measuring Ui |0〉. Then a = (1− ε)/(λLn3) and the expected number of calls to Ui by the
quantum minimum finding algorithm for a constant probability of error is

O

(√
(λLn3)/(1− ε)

)
= O

(√
n3
)
. (34)

As in Section 5.2, repeating the quantum minimum finding algorithm O(log n) times allows us
to reduce the error probability to O(1/n) so that sampling O(n) tracks has a constant probability
of error. In particular, since one application of the quantum minimum finding algorithm ensures
failure probability smaller than 1/2 and there cannot be more than λn3 tracks, the probability
to not find the minimum in any of the iterations (if there are any valid tracks remaining) after
repeating the algorithm dlog 2λn3e times is below 1/2.

24

Once we have found the best track, we can build a self-balancing binary tree T (as in Section 4)
to be used in track selection for the next track. More generally – suppose that we have found the
j best tracks tracks that the CTF algorithm outputs. Each time we find a new track, we insert
it in T . This tree never exceeds O(n) size, and so the insertion operation cost is O(log n). Ui

queries T to mark as invalid those tracks that have an overlap with the i tracks already added
to output.

Algorithm 9: Track reconstruction in superposition.

input : event record
output: reconstructed tracks

1 initialize empty self-balancing binary tree T ;
2 initialize i← 0;
3 repeat
4 for j from 1 to dlog

(
2λn3

)
e do

5 trackj ← output of the quantum minimum finding algorithm minimizing Qi(ψ) –
the score encoded in the second register of Ui |0〉 (32);

6 track ← arg minj Qi(trackj);
7 if track passes CTF criteria and none of its r-tuples are in T then
8 foreach r-tuple of track do
9 insert r-tuple into tree T ;

10 add track to output;
11 i← i+ 1;

12 else
13 stop

Theorem 22. Algorithm 9 reconstructs O(n) tracks in time Õ(n3).

Proof. Each iteration of the main loop in Algorithm 9 takes Õ(
√
n3 maxi TUi

) time, where
maxi TUi

= Õ(
√
n) (Lemma 20). There are O(n) iterations to reconstruct O(n) tracks. Thus

the total time complexity of Algorithm 9 is

Õ
(
n
√
n3
√
n
)

= Õ
(
n3
)
. (35)

For the special case where tracks are not allowed to share any hits, the approach described
in this section allows the complete removal of the cleaning stage. Once the best track is found,
all the points that belong to it can be masked (removed) and the algorithm is run again to find
the best track on the remaining points.

6 Discussion About our Assumptions

In our analysis we have simplified some aspects of the CTF algorithm in order to make the
description clearer. We now comment on some of the omitted details.

First, we should note that in the CTF the tracks are reconstructed by multiple iterations.
That is, the sequence of four stages described in Section 3 (seeding, finding, cleaning, and se-
lection) is called several times for the same event record. The idea of this iterative tracking is

25

that the initial iterations search for the tracks that are easiest to find (high transverse momen-
tum, and produced near the interaction region). After each iteration, the hits associated to the
reconstructed tracks are removed, thereby simplifying the subsequent iterations. As far as our
complexity analysis is concerned, the most significant modification from iteration to iteration is
the number of hits used to form seeds. The first iteration forms seeds with hit triplets, as we
have described in Section 3.1. But in some subsequent iterations seeds are formed by picking just
two hits, as we can use the results of the previous iteration to reconstruct the collision vertices,
which serve as the “third hit”. For these iterations, assuming that there is a constant number of
collision vertices, the complexity of seed generation becomes O(n2).

Regarding our model for the generation of the trajectories, we assumed that the probability
distribution pπ on parameter space P was strictly positive. This was not deduced from explicit
particle physics calculations, but is a rather lax assumption that includes the seemingly reason-
able assumption that no scattering direction is forbidden. We’ve also assumed that an event is
generated by drawing n random samples π1, . . . πn, each following pπ. Underlying this there is
the physical assumption that the trajectories of the charged particles are treated as uncorrelated.

Another of our assumptions was that the layers were continuous surfaces, as this made the
description of the algorithm clearer (especially for the track finding stage – Section 3.2). In
reality, the layers are formed by overlapping sensor modules. This means that it is possible for
a particle to leave more than one detection per layer. To accommodate this possibility, at each
layer the CTF selects compatible modules, which are the ones whose boundaries are up to a
given distance from the predicted measurement. These modules are divided into module groups
in such a way that no two modules in the same group overlap. Only the best measurement from
each group is considered to integrate the track candidate. Again, we only allow up to five new
track candidates per step. At each iteration there are O(1) module groups, each with O(n) hits,
so the claimed complexity remains the same.

Furthermore, we assumed that the detector was a collection of L = O(1) cylindrical layers.
In reality, the CMS tracker has a barrel-like shape, with thirteen cylindrical layers aligned with
the beam line and fourteen disk layers in the transverse plane. We did not include the detailed
geometry of the detector in our discussion in order to simplify the exposition. In fact, our analysis
holds for any disposition of layers as long as we assume that each particle only traverses one layer
at a time and that their trajectories do not return to a previously visited layer.

We have considered that the hit data is given in the form of three-dimensional points. Actu-
ally, as a charged particle traverses a layer, it activates multiple sensor pixels. Then, the signals
in neighbouring pixels are grouped together to form three-dimensional clusters. The centroid of
each cluster determines a hit’s position. But the cluster shape also carries information. In partic-
ular, in some cases it is possible to exclude a hit from a given track based on the incompatibility
between the hit’s cluster shape and the track’s trajectory. We may see this as a motivation to
think about the case where kseed = O(na) with a < 3, as in Section 5.1 – even though the cluster
shape information does not provide a mean to find the good seeds faster, it guarantees that we
can recognize them.

In summary, we see that several of our simplifying assumptions could be lifted without chang-
ing our conclusions. Arguably, the strongest assumption was ignoring the hits’ cluster shape
information, as that might be used to exclude kseed = O(n3) as a worst-case scenario.

As a final note, we would like to point out that more recent versions of the CTF have been
developed [21]. The most important modifications concern the seed generation stage, which now
uses quadruplets of hits instead of triplets. The complexity of the other stages should remain as
we have described.

26

Table 1: Summary of the computational complexity of the Combinatorial Track Finder (CTF)
algorithm. n is the number of charged particles present in the event record, kseed is the number
of seeds generated, kfind is the number tracks built during the track finding stage, and kclean is
the number of tracks that pass the cleaning stage. Note that kseed = O(n3), kfind = O(kseed),
kclean = O(kfind). In the General Case column we show the complexity of the algorithms for each
of the track reconstruction stages, both the classical and quantum versions. The two rows for the
track cleaning stage refer the original version of [20] and to the one that we propose on Section 4.
On the quantum side some entries are marked as “–” where we did not propose/expect a quantum
algorithm with advantage over the classical one. In the final row we write the complexity of the
full CTF algorithm, both in the worst-case (where kseed = O(n3)) and in the particular case
where the number of seeds is O(n). We find a quantum speedup for any value of kseed. In the
final column we write the complexity of our algorithm for track reconstruction under the promise
that the total number of reconstructed tracks is O(n).

Stages of CTF
General Case

Promise of O(n)

Reconstructed Tracks

Classical Quantum Quantum

Seed Generation
O(n3)

(Theorem 2)

Õ(
√
n3kseed)

(Theorem 13)

Õ(n3)

(Theorem 22)

Track Finding
O(nkseed)

(Theorem 5)

Õ(
√
nkseed)

(Theorem 16)

Track Cleaning

(original)

O(k2
find)

(Theorem 6)
–

Track Cleaning

(improved)

Õ(kfind)

(Theorem 9)
–

Track Selection
O(kclean)

(Theorem 7)
–

Full

Algorithm

(improved)

Worst-Case

(kseed = O(n3))

O(n4)

(Theorem 10)

Õ(n3.5)

(Theorem 14)

O(n) Seeds
O(n3)

(Theorem 10)

Õ(n2)

(Theorem 14)

27

7 Conclusions

We have analyzed the computational complexity of the state-of-the-art classical tracking algo-
rithm Combinatorial Track Finder (CTF) as a function of the number of charged particles n
produced in a given event. In particular, we have analyzed separately the different stages of
CTF: seed generation, track finding, track cleaning, and track selection. Furthermore, we have
developed quantum algorithms offering a speedup for the seed generation and track finding stages.
Our results are summarized in Table 1, and we discuss here our main findings.

On the classical front, we have shown that in the worst-case scenario the CTF algorithm has
complexity O(n6), as stated in Theorem 8. We have then proposed a modification to the track
cleaning stage, namely Algorithm 5, that lowers the corresponding complexity to:

O
(
n3 + nkseed

)
, (36)

where kseed is the number of formed track seeds, as stated in Theorem 10. In the worst-case
scenario, where kseed = O(n3) as indicated in Lemma 3, our modified CTF algorithm scales
globally as O(n4). We have thus found a classical improvement to the current CTF algorithm.

Then, on the quantum front, we have shown that, by combining our proposed quantum search
routines (Algorithms 6 and 8), we can reconstruct the same tracks as the classical CTF algorithm
up to bounded error probability in time:

Õ
(√

n3kseed +
√
nkseed

)
, (37)

as stated in Theorem 17. This represents an advantage over the classical complexity for any value
of kseed. In particular, in the worst-case scenario, our quantum version of CTF scales globally as
Õ(n3.5), offering a speedup, albeit small, with respect to our improved classical version.

Finally, we have shown that under the reasonable assumption that the fraction of fake tracks
is kept constant in the asymptotic limit – that is, the number of reconstructed tracks is O(n) –
we can replicate the output of the CTF algorithm (Algorithm 9) with quantum complexity:

Õ(n3), (38)

as stated in Theorem 22.
Overall, our comprehensive computational complexity analysis led us to a classical improve-

ment of the Combinatorial Track Finder algorithm, as well as, to the best of our knowledge, to the
first proof of a quantum speedup for a state-of-the-art track reconstruction method. And, even
though asymptotic results may be of limited use for practical problems, and quantum hardware
may still be far from being able to address big data problems, we hope our original approach to
tracking can motivate further investigations on the potential of quantum computation to tackle
the increasingly challenging, and potentially intractable classically, High-Energy Physics data
analysis problems.

Acknowledgements

The authors thank Felice Pantaleo for precious discussions about the classical Combinatorial
Track Finder algorithm. Furthermore, the authors acknowledge project QuantHEP – Quantum
Computing Solutions for High-Energy Physics, supported by the EU H2020 QuantERA ERA-
NET Cofund in Quantum Technologies, and FCT – Fundação para a Ciência e a Tecnologia
(QuantERA/0001/2019). DM, AK, SP, GQ, PB, JS, YO thank the support from FCT, namely

28

through project UIDB/50008/2020. DM acknowledges the support from FCT through scholar-
ship 2020.04677.BD. AG has been partially supported by National Science Center under grant
agreement 2019/32/T/ST6/00158 and 2019/33/B/ST6/02011. MK thanks MikroTik for the
scholarship administrated by the UL Foundation. SP thanks the support from the la Caixa
foundation through sholarship LCF/BQ/DR20/11790030. GQ thanks the support from FCT
through project CEECIND/02474/2018.

References

[1] Johannes Albrecht et al. “A Roadmap for HEP Software and Computing R&D for the
2020s”. In: Computing and Software for Big Science 3.1 (Mar. 2019), p. 7. doi: 10.1007/
s41781-018-0018-8.

[2] “High-Luminosity Large Hadron Collider (HL-LHC): Technical Design Report V. 0.1”. In:
4 (Nov. 2017). Ed. by Giorgio Apollinari et al. doi: 10.23731/CYRM-2017-004.

[3] Asmaa Abada et al. “FCC Physics Opportunities: Future Circular Collider Conceptual
Design Report Volume 1”. In: Eur. Phys. J. C 79.6 (June 2019), p. 474. doi: 10.1140/
epjc/s10052-019-6904-3.

[4] Frédéric Bapst et al. “A Pattern Recognition Algorithm for Quantum Annealers”. In:
Computing and Software for Big Science 4.1 (Dec. 2020), p. 1. issn: 2510-2036. doi: 10.
1007/s41781-019-0032-5.

[5] Alexander Zlokapa et al. Charged Particle Tracking with Quantum Annealing-Inspired Op-
timization. Aug. 2019. arXiv: 1908.04475 [quant-ph].

[6] Souvik Das et al. Track clustering with a quantum annealer for primary vertex reconstruc-
tion at hadron colliders. Mar. 2019. arXiv: 1903.08879 [hep-ex].

[7] Cenk Tüysüz et al. Particle Track Reconstruction with Quantum Algorithms. Mar. 2020.
arXiv: 2003.08126 [quant-ph].

[8] Cenk Tüysüz et al. A Quantum Graph Neural Network Approach to Particle Track Recon-
struction. July 2020. arXiv: 2007.06868 [quant-ph].

[9] Cenk Tüysüz et al. Performance of Particle Tracking Using a Quantum Graph Neural
Network. Dec. 2020. arXiv: 2012.01379 [quant-ph].

[10] Wen Guan et al. “Quantum machine learning in high energy physics”. In: Machine Learn-
ing: Science and Technology 2.1 (Mar. 2021), p. 011003. doi: 10.1088/2632-2153/abc17d.

[11] Sau Lan Wu et al. Application of Quantum Machine Learning using the Quantum Varia-
tional Classifier Method to High Energy Physics Analysis at the LHC on IBM Quantum
Computer Simulator and Hardware with 10 qubits. Dec. 2020. arXiv: 2012.11560.

[12] Alex Mott et al. “Solving a Higgs optimization problem with quantum annealing for ma-
chine learning”. In: Nature 550.7676 (Oct. 2017). doi: 10.1038/nature24047.

[13] Koji Terashi et al. Event Classification with Quantum Machine Learning in High-Energy
Physics. Feb. 2020. arXiv: 2002.09935 [physics.comp-ph].

[14] Sau Lan Wu et al. Application of Quantum Machine Learning using the Quantum Vari-
ational Classifier Method to High Energy Physics Analysis at the LHC on IBM Quan-
tum Computer Simulator and Hardware with 10 qubits. Dec. 2020. arXiv: 2012.11560

[quanth-ph].

29

https://doi.org/10.1007/s41781-018-0018-8
https://doi.org/10.1007/s41781-018-0018-8
https://doi.org/10.23731/CYRM-2017-004
https://doi.org/10.1140/epjc/s10052-019-6904-3
https://doi.org/10.1140/epjc/s10052-019-6904-3
https://doi.org/10.1007/s41781-019-0032-5
https://doi.org/10.1007/s41781-019-0032-5
https://arxiv.org/abs/1908.04475
https://arxiv.org/abs/1903.08879
https://arxiv.org/abs/2003.08126
https://arxiv.org/abs/2007.06868
https://arxiv.org/abs/2012.01379
https://doi.org/10.1088/2632-2153/abc17d
https://arxiv.org/abs/2012.11560
https://doi.org/10.1038/nature24047
https://arxiv.org/abs/2002.09935
https://arxiv.org/abs/2012.11560
https://arxiv.org/abs/2012.11560

[15] Jamie Heredge et al. Quantum Support Vector Machines for Continuum Suppression in B
Meson Decays. Mar. 2021. arXiv: 2103.12257 [quanth-ph].

[16] Vasileios Belis et al. Higgs analysis with quantum classifiers. Apr. 2021. arXiv: 2104.07692
[quanth-ph].

[17] Anthony E. Armenakas and Oliver K. Baker. Application of a Quantum Search Algorithm
to High- Energy Physics Data at the Large Hadron Collider. Oct. 2020. arXiv: 2010.00649
[quant-ph].

[18] Su Yeon Chang et al. Quantum Generative Adversarial Networks in a Continuous-Variable
Architecture to Simulate High Energy Physics Detectors. Jan. 2021. arXiv: 2101.11132
[quanth-ph].

[19] Annie Y. Wei et al. “Quantum algorithms for jet clustering”. In: Phys. Rev. D 101.9 (May
2020), p. 094015. doi: 10.1103/PhysRevD.101.094015.

[20] The CMS Collaboration. “Description and performance of track and primary-vertex recon-
struction with the CMS tracker”. In: Journal of Instrumentation 9.10 (Oct. 2014), p. 10009.
doi: 10.1088/1748-0221/9/10/P10009.

[21] Andrea Bocci et al. “Heterogeneous Reconstruction of Tracks and Primary Vertices With
the CMS Pixel Tracker”. In: Frontiers in Big Data 3 (Dec. 2020), p. 49. doi: 10.3389/
fdata.2020.601728.

[22] Rudolf Frühwirth. “Application of Kalman filtering to track and vertex fitting”. In: Nu-
clear Instruments and Methods in Physics Research Section A: Accelerators, Spectrome-
ters, Detectors and Associated Equipment 262.2 (Dec. 1987), pp. 444–450. doi: https:
//doi.org/10.1016/0168-9002(87)90887-4.

[23] Giacomo Sguazzoni. “Track reconstruction in CMS high luminosity environment”. In: Nu-
clear and Particle Physics Proceedings 273-275 (May 2016), p. 2497. doi: 10.1016/j.
nuclphysbps.2015.09.437.

[24] The ATLAS Collaboration. “Performance of the ATLAS track reconstruction algorithms
in dense environments in LHC Run 2”. In: European Physical Journal C 77.10 (Oct. 2017).
doi: 10.1140/epjc/s10052-017-5225-7. eprint: arXiv:1704.07983v2.

[25] Nils Braun. Combinatorial Kalman Filter and High Level Trigger Reconstruction for the
Belle II Experiment. Springer Theses. Cham: Springer International Publishing, July 2019.
doi: 10.1007/978-3-030-24997-7.

[26] Christoph Durr and Peter Hoyer. A Quantum Algorithm for Finding the Minimum. July
1996. arXiv: quant-ph/9607014 [quant-ph].

[27] Ryan Babbush et al. “Focus beyond Quadratic Speedups for Error-Corrected Quantum
Advantage”. In: PRX Quantum 2 (1 Mar. 2021). doi: 10.1103/PRXQuantum.2.010103.

[28] Rainer Mankel. “Pattern recognition and event reconstruction in particle physics experi-
ments”. In: Reports on Progress in Physics 67.4 (Mar. 2004), p. 553. doi: 10.1088/0034-
4885/67/4/r03.

[29] Vittorio Giovannetti, Seth Lloyd, and Lorenzo Maccone. “Quantum Random Access Mem-
ory”. In: Physical Review Letters 100.16 (Apr. 2008), p. 160501. doi: 10.1103/PhysRevLett.
100.160501.

[30] Vittorio Giovannetti, Seth Lloyd, and Lorenzo Maccone. “Architectures for a quantum
random access memory”. In: Physical Review A 78.5 (Nov. 2008), p. 052310. doi: 10.

1103/PhysRevA.78.052310.

30

https://arxiv.org/abs/2103.12257
https://arxiv.org/abs/2104.07692
https://arxiv.org/abs/2104.07692
https://arxiv.org/abs/2010.00649
https://arxiv.org/abs/2010.00649
https://arxiv.org/abs/2101.11132
https://arxiv.org/abs/2101.11132
https://doi.org/10.1103/PhysRevD.101.094015
https://doi.org/10.1088/1748-0221/9/10/P10009
https://doi.org/10.3389/fdata.2020.601728
https://doi.org/10.3389/fdata.2020.601728
https://doi.org/https://doi.org/10.1016/0168-9002(87)90887-4
https://doi.org/https://doi.org/10.1016/0168-9002(87)90887-4
https://doi.org/10.1016/j.nuclphysbps.2015.09.437
https://doi.org/10.1016/j.nuclphysbps.2015.09.437
https://doi.org/10.1140/epjc/s10052-017-5225-7
arXiv:1704.07983v2
https://doi.org/10.1007/978-3-030-24997-7
https://arxiv.org/abs/quant-ph/9607014
https://doi.org/10.1103/PRXQuantum.2.010103
https://doi.org/10.1088/0034-4885/67/4/r03
https://doi.org/10.1088/0034-4885/67/4/r03
https://doi.org/10.1103/PhysRevLett.100.160501
https://doi.org/10.1103/PhysRevLett.100.160501
https://doi.org/10.1103/PhysRevA.78.052310
https://doi.org/10.1103/PhysRevA.78.052310

[31] T. Miao et al. Beam position determination using tracks. Aug. 2007. CERN-CMS-NOTE:
2007-021,FERMILAB-FN-0816-E.

[32] Rudolph Kalman. “A New Approach to Linear Filtering and Prediction Problems”. In:
Transactions of the ASME–Journal of Basic Engineering 82.Series D (Mar. 1960), p. 36.
doi: 10.1115/1.3662552.

[33] Thomas H. Cormen et al. Introduction to Algorithms. MIT Press, July 2010. isbn: 97802620
33848.

[34] Michael Nielsen and Isaac Chuang. Quantum Computation and Quantum Information.
Cambridge University Press, Mar. 2010. doi: 10.1017/CBO9780511976667.

[35] Lov Grover. “Quantum Mechanics Helps in Searching for a Needle in a Haystack”. In:
Phys. Rev. Lett. 79.2 (July 1997), p. 325. doi: 10.1103/PhysRevLett.79.325.

[36] Michel Boyer et al. “Tight Bounds on Quantum Searching”. In: Fortschritte der Physik
46.4-5 (June 1998), p. 493. doi: 10.1002/(sici)1521-3978(199806)46:4/5<493::aid-
prop493>3.0.co;2-p.

[37] Gilles Brassard, Peter Høyer, and Alain Tapp. “Quantum counting”. In: Lecture Notes in
Computer Science 1443 (July 1998), p. 820. doi: 10.1007/bfb0055105.

[38] Gilles Brassard et al. “Quantum amplitude amplification and estimation”. In: Quantum
Computation and Information 305 (2002), p. 53. doi: 10.1090/conm/305.

31

2007-021, FERMILAB-FN-0816-E
https://doi.org/10.1115/1.3662552
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1103/PhysRevLett.79.325
https://doi.org/10.1002/(sici)1521-3978(199806)46:4/5<493::aid-prop493>3.0.co;2-p
https://doi.org/10.1002/(sici)1521-3978(199806)46:4/5<493::aid-prop493>3.0.co;2-p
https://doi.org/10.1007/bfb0055105
https://doi.org/10.1090/conm/305

	1 Introduction
	1.1 Structure of the Paper

	2 Preliminaries
	2.1 Overview of Track Reconstruction
	2.2 Computational Model

	3 The Combinatorial Track Finder
	3.1 Seed Generation
	3.2 Track Finding
	3.3 Track Cleaning
	3.4 Track Selection
	3.5 Complexity of the CTF Algorithm

	4 A Classical Improvement for Track Cleaning
	5 Quantum Algorithms for Track Reconstruction
	5.1 Seed Generation with Quantum Search
	5.2 Track Finding with a Quantum Minimum Finding
	5.3 Reconstructing Tracks in Superposition

	6 Discussion About our Assumptions
	7 Conclusions

