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We study the out-of-equilibrium prop-
erties of 1 + 1 dimensional quantum elec-
trodynamics (QED), discretized via the
staggered-fermion Schwinger model with
an Abelian Zn gauge group. We look at
two relevant phenomena: first, we ana-
lyze the stability of the Dirac vacuum with
respect to particle/antiparticle pair pro-
duction, both spontaneous and induced by
an external electric field; then, we exam-
ine the string breaking mechanism. We
observe a strong effect of confinement,
which acts by suppressing both sponta-
neous pair production and string breaking
into quark/antiquark pairs, indicating that
the system dynamics deviates from the ex-
pected behavior toward thermalization.

1 Introduction

Gauge fields coupled to matter are at the heart of
the microscopical description of nature: they rep-
resent the key ingredient to describe the physics
of fundamental particles and interactions and ap-
pear in a variety of problems of condensed matter
physics, such as superconductivity or the Quan-
tum Hall Effect [1, 2]. Quantum field theory has
developed by tackling more and more complicate
issues, and by now we have not only a compre-
hensive description of the low energy sector of the
model, but also techniques to study strong cou-
pling, non-perturbative and topological effects.
Numerical simulations, especially those based on
Monte Carlo techniques [3], have been able to

confirm many phenomena predicted with analyt-
ical methods and shed light on several non-trivial
aspects. The possibility to describe a given field
theory through a lattice theory is an important
problem [4, 5], which has been investigated by
outstanding physicists since the 70’s [8, 6, 7, 9].

It is clear that, from a theoretical point of
view, it is important to determine how effec-
tively a lattice model is able to reproduce the
phenomenology of a given quantum gauge the-
ory. Very often this offers a formidable com-
putational problem, but recently techniques de-
veloped from quantum information insights, such
as tensor networks [10, 11], have been used to
tackle these questions, thanks to their intrinsic
ability to restrict the dynamics to relevant sub-
spaces of the Hilbert space, exploiting the entan-
glement of the states that contribute to the dy-
namics. From an experimental point of view, re-
cent advances in the control of ultra-cold atomic
systems have paved the way to a whole new way
of studying fundamental theories in the spirit
of quantum simulations, as suggested by Feyn-
man [12]. At present, there are many propos-
als in the literature to use ultra-cold atoms or
trapped ions in optical lattices to simulate many
body Hamiltonians [13, 14, 15, 16, 17], as well
as Abelian and non-Abelian lattice gauge theo-
ries [18, 19, 20, 21, 22, 23, 24, 25, 26]. These
ideas led to the first experimental realization of
a quantum simulation of 1+1 dimensional quan-
tum electrodynamics (QED) with four trapped
ions [27]. On the other hand, the implementa-
tion of classical “synthetic” fields has been pro-
posed and realized in a number of experiments
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[28, 29, 30, 31, 32].

In general, an approach based on quantum sim-
ulators opens the possibility to study in a more
efficient way problems that have always been dif-
ficult to tackle, including non-perturbative ef-
fects as well as genuine dynamical behavior.
These phenomena are necessary to understand
the essence of Abelian and non-Abelian quantum
field theories in applications to particle physics.
Two examples on which we will elaborate in this
article are vacuum stability in QED with respect
to particle/antiparticle pair production [33] and
confinement in quantum chromodynamics (QCD)
[34], together with the associated string breaking
mechanism. In recent years, much attention has
also been devoted to the interplay between corre-
lations and dynamics in statistical mechanics and
many-body systems in the quantum realm, which
may exhibit unusual thermalization and equili-
bration properties. It has been stressed that, in a
closed quantum system, non-equilibrium dynam-
ics might display behaviors that cannot be un-
derstood by means of the standard theory of er-
godic or integrable models and the correspond-
ing (Gibbs ensemble) thermalization hypothesis.
This is the case of the so-called many-body lo-
calization phenomenon (for reviews of this topic
see, for example, [35, 36]) or of the recently dis-
cussed quantum scars [37, 38]. The interest in
these systems and phenomena has fostered the
development of novel paradigms.

In the spirit of such research developments, in
this article we shall tackle the problem of the out-
of-equilibrium real-time dynamics of 1+1 dimen-
sional QED, which represents the simplest model
of fermionic matter coupled to (Abelian) gauge
fields. In spite of its simplicity, the model shares
many phenomenological features with more com-
plicated theories, such as QCD, thus representing
an interesting instance to test quantum field the-
ory and quantum simulations. The model has
been widely investigated since the 70’s by a num-
ber of outstanding physicists [8, 6, 7, 9] and has
been recently proposed as a possible viable ex-
perimental option in the not-too-distant future
[41, 42, 40, 43, 39]. Indeed, a first experiment
reproducing such a model with few qubits in a
ion trap has already been reported [27] and new
ideas have been proposed for possible experimen-
tal realizations with Rydberg atoms [44, 39].

The first problem to face when trying to en-

code a lattice-gauge theory in a quantum sim-
ulation with cold atoms or a classical numer-
ical simulation is the fact that the number of
states of the gauge field, associated to links be-
tween lattice sites, must be finite. This prob-
lem has been tackled in different ways in liter-
ature. Sticking to U(1) theories, it is possible
to represent gauge fields by means of spin vari-
ables [45, 46], considering the so called quantum
link model [47, 48, 49, 50]. Otherwise, one can
try to discretize the gauge group by replacing
U(1) with Z, which however admits only infinite-
dimensional representations. In such a case, the
Hilbert space describing the gauge degrees of
freedom must be truncated [42, 51]. These ap-
proaches allows for the investigation of questions
that are traditionally difficult to analyze, such
as the emergence of quantum phase transitions,
non-perturbative phenomena and dynamical as-
pects [45, 22, 52, 46, 53, 54, 55, 51, 56, 57].

We adopt here the scheme presented in [58],
where we considered a lattice version of the
staggered-fermion Schwinger model [59], in which
the U(1) gauge degrees of freedom are given in
terms of the possible finite dimensional repre-
sentations of the corresponding Weyl group [40],
thus yielding a discrete and finite implementation
through the group Zn. In this approach, a sys-
tematic control of finite-n effects is possible and
a rigorous approximation of lattice U(1) quan-
tum electrodynamics in the large-n limit becomes
available to investigation. The static phase dia-
gram of this model has been studied in [58], while
in [60, 61] a variant of it has been shown to admit
topological phases. In this paper, our goal is to
study out-of-equilibrum properties of this model,
by analysing two major phenomena:

i) the stability of the Dirac vacuum with
respect to the production of virtual
particle/anti-particle pairs, induced by
quantum fluctuations and relevant to un-
derstand striking behaviors of the quantum
vacuum such as the Casimir effect [62];

ii) dynamical effects of confinement, such as the
string breaking mechanism, which is strictly
connected to the question of the asymptotic
freedom of quarks [34].

We will see that both these phenomena de-
pend on the values of the two parameters that en-
ter the Hamiltonian, namely the fermionic mass
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m and the gauge coupling g. In particular, by
means of simulations based on the Density Ma-
trix Renormalization Group (DMRG) algorithm,
we will show that, in the strong coupling regime,
the dynamical behaviour of the model strongly
deviates from the usual thermalization and relax-
ation properties which are expected to be found
in a many-body non-integrable system, resulting
in stable and/or recurrent evolution of interest-
ing physical quantities. This shows that confine-
ment and a slow dynamics are not specific fea-
tures of the U(1) Schwinger model, but of the
whole class of discrete lattice models we consider
in this paper, which might be relevant for the
description of future experiments with Rydberg
atoms [39]. We remark also that similar results
have been obtained in different many-body sys-
tems, such as non-integrable spin-chain models
[63] or constrained Hamiltonians [38] .

This article is organized as follows. In Sect. 2,
we review the discretized version of the Schwinger
model for 1+1 dimensional QED, that is accom-
modated on a one-dimensional lattice and en-
dowed with a Zn symmetry. This model, which
depends on two physical parameters, namely the
fermionic mass m and the gauge coupling g, ex-
hibits a quantum phase transition atmc = −0.33,
belonging the Ising universality class. For m >
mc the ground state of the model is in a confined
phase, in which elementary excitations above the
Dirac sea vacuum are of mesonic type. On the
other hand, for m < mc, a symmetry is bro-
ken and a nonvanishing average electric field ap-
pears in the ground state. In Sect. 3, we set
up the quench protocol to simulate spontaneous
pair production, occurring in absence of an exter-
nal electric field. We analyze this phenomenon
by looking at the dynamical evolution of sev-
eral physical quantities of interest, such as par-
ticle density, entanglement entropy, density cor-
relation functions. We will see that, contrary to
what is found in many other integrable and non-
integrable models, the production of correlated
particle/antiparticle pairs is strongly suppressed
when we consider system parameters deep in the
confined phase. In Sect. 4, we examine the phe-
nomenon of pair production induced by the pres-
ence of an external electric field, finding an agree-
ment between our simulations and old predictions
by Schwinger [33] for the rate of pair produc-
tion. Also, by examining the time evolution of

Figure 1: Zn-discretization of QED in 1+1 dimensions,
with fermionic matter ψx living on sites x ∈ Z and
electric field E

(n)
x,x+1 living on links between adjacent

sites, described by a periodic discrete variable with a
step 2π/n.

entanglement, we conclude that the formation of
mesonic excitations is stimulated by a dynam-
ical effect due to the presence of the external
field, of a different nature from the one emerging
in the spontaneous case, examined in the Sect.
3. Finally, in Sect. 5, we will consider the real
time evolution of a string excitation. We observe
that the string breaks into mesons, thus giving
rise to the so-called string-breaking mechanism,
only when interactions are sufficiently weak. Vice
versa, deep in the confined regime, the strings re-
main localized and are apparently stable.

2 The model
We start from the Hamiltonian of quantum elec-
trodynamics (QED) in one spatial dimension:

H =
∫

dx
{
ψ†γ0

[
−γ1(i∂1 + gA) +m

]
ψ + E2

2

}
,

(1)
which describes a U(1) gauge theory, where a
charged particle (electron), represented by the
spinor field ψ(t, x), interacts with the electromag-
netic field Fµν = ∂µAν − ∂νAµ (µ, ν = 0, 1),
associated with the potential Aµ. Here m and
g represent the electron mass and charge, re-
spectively, while the Dirac matrices γ satisfy
{γµ, γν} = 2ηµν with η = diag(1,−1). We work
in the canonical gauge, in which the temporal
component A0 is set to zero, while the spatial
component A := A1 is taken as the conjugate
variable to E:

[E(t, x), A(t, x′)] = iδ(x− x′). (2)

The Hamiltonian (1) must be complemented with
the enforcement of Gauss law

G(x) ≡ ∂1E(x)− gψ†(x)ψ(x) ≈ 0 (3)
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even site, empty

even site, occupied

odd site, empty

odd site, occupied
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0

vacuum

meson

antimeson

string

electric fieldstaggered fermions

Figure 2: Pictorial representation of notable configura-
tions in a Z3 gauge theory. All the represented cases are
consistent with the Gauss law.

in a weak sense, meaning that it is possible to
select a subspace, called the physical subspace,
of states |ψ〉 for which G(x)|ψ〉 = 0.

As described in Ref. [40], to which we refer
for further details, it is possible to discretize this
model following two steps:

i) first, we perform a spatial discretization, in
which the space continuum is replaced by a
linear lattice of points with spacing a; in or-
der to avoid the fermion doubling problem
we adopt Schwinger’s approach [6, 7, 4, 5] of
staggered fermions;

ii) second, by following the Weyl-Wigner quan-
tization scheme, we approximate the gauge
group U(1) with the finite group Zn; this
step is essential in order to work with a fi-
nite number of local degrees of freedom also
for the gauge variables.

The discretized Hamiltonian reads:

H = −
∑
x

(ψ†x+1Ux,x+1ψx + h.c.)

+ m
∑
x

(−1)xψ†xψx + g2

2
∑
x

E2
x,x+1, (4)

with x (1 ≤ x ≤ N) labelling the sites of a one-
dimensional lattice of spacing a = 1. Here, the
one-component spinor is represented by the cre-
ation and annihilation operators ψ†x and ψx, de-
fined on each site x and characterized by a stag-
gered mass (−1)xm , while the gauge fields are
defined on the lattice links (x, x + 1) through
the pair of operators Ex,x+1 (electric field) and

Ux,x+1 (unitary comparator). The gauge field op-
erators act on the n-dimensional Hilbert spaces
H(x,x+1), attached to each link and spanned by
the orthonormal bases {|vk〉x,x+1}0≤k≤n−1, that
diagonalize the local electric field:

Ex,x+1 =
n−1∑
k=0

√
2π
n

(
k − n− 1

2 + φ

)
|vk〉x,x+1〈vk|.

(5)
Here, a non-zero value of the angle φ entails the
presence of a constant background field, which in
turn corresponds to charges at the boundary of
the chain. The unitary comparator, instead, acts
as a cyclic ladder operator:

Ux,x+1|vk〉x,x+1 = |vk+1〉x,x+1 for k < n− 1,
(6)

Ux,x+1|vn−1〉x,x+1 = |v0〉x,x+1. (7)

Gauss law is implemented by requiring that the
physical states belong to the null space of the
operator

Gx ≡ ψ†xψx + 1
2[(−1)x − 1]− (Ex,x+1 − Ex−1,x).

(8)
Let us remark that, in one spatial dimension,

the fermionic density ψ†xψx and the local electric
field completely determine each other up to a con-
stant, which corresponds to the value of the elec-
tric field on one boundary. Thus, one can inte-
grate out the gauge field in order to obtain an
effective Hamiltonian in which only the matter
fields appear, corresponding to a spin 1/2 model
with long-range interactions [44]. On the other
hand, one can eliminate the fermionic field to get
an effective Hamiltonian that contains only the
gauge variables. Within our approach, one thus
obtains a local Hamiltonian with a Zn-symmetry,
acting as (4) when restricted to the physical sub-
space. The study of such Hamiltonian will be pre-
sented in a future work. Here, it is worth noticing
that these ideas can be generalized also to higher
dimensions [64, 65].

In Ref. [58], we analyzed the phase diagram of
the discretized Hamiltonian (4) showing that, for
any n, it exhibits a phase transition at a critical
value of the mass mc between a confined phase
for m > mc, in which the ground state is given
by a dressed Dirac sea vacuum, and a deconfined
phase for m < mc, in which the ground state is
characterized by a nonvanishing average electric
field, which entails a symmetry breaking.
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In our representation, the Dirac sea vacuum
is obtained by filling up all odd sites (negative
mass fermions) and leaving the even ones (posi-
tive mass fermions) empty, as shown in the first
line of Fig. 2. In this case, the Gauss law (8) is
satisfied if the electric field is zero on any link,
a fact that we represent in the figure with a
non-oriented link. A meson (antimeson) is ob-
tained by acting on the Dirac sea by moving one
fermion on an odd site to the right (to the left),
as shown in the second (third) line of Fig. 2. In
this case, the Gauss law requires that the electric
field on the connecting link is equal to +

√
2π/n

(−
√

2π/n), represented in the picture by an ori-
ented link pointing to the right (left). In the
fourth line of Fig. 2 we also show another gauge
invariant configuration, representing a string, in
which the particle/antiparticle excitations that
constitute a meson are moved farther away from
each other, with the electric field being constant
and nonvanishing on all the intermediate links.
The real-time dynamics of such string configura-
tions will be studied in the second part of this
article.

The phase transition belongs to the Ising
universality class for all n, with the con-
fined/deconfined cases corresponding respectively
to the paramagnetic/ferromagnetic phases of the
Ising model in a transverse field. Here, the quan-
tum phase transition is driven by the value of
the fermion mass (playing the role of the exter-
nal transverse magnetic field) and the order pa-
rameter (the magnetization in the Ising case) is
represented by the mean value of the electric field
operator

Σ = 1
N

∑
x

〈Ex,x+1〉 , (9)

or, equivalently, by the mean fermion density

ρ = 1
N

∑
x

〈12 [1− (−1)x] + (−1)xψ†xψx〉, (10)

which, in the thermodynamic limit, are nonvan-
ishing only in the deconfined phase. The value
of mc depends on the dimension n used to dis-
cretized the U(1) gauge group, but it approaches
mc ' −0.33 in the large-n limit. In addition, as
expected in the Ising model, close to the transi-
tion point the first excitation has conformal di-
mension d = 2, corresponding to a kink-like (or
domain wall) solution [58].

Let us remark that while the Ising model in
a transverse field is integrable for any value of

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
t

0.0

0.1

0.2

0.3

0.4

ρ
(t

)

Figure 3: Time evolution of the particle density for a
system of N = 4 sites, prepared at t = 0 in the Dirac sea
vacuum and evolving under the Z3 model Hamiltonian.
Here and in all the following figures, time is measured
in units [energy]−1.

the magnetic field, our model is more complicated
and never integrable (except for the trivial case
g = 0), because of the gauge coupling between
fermionic matter and electric field. In the Ising
case, integrability is lost and effective interactions
between domain-wall excitations are present only
if one adds the coupling with an external uniform
longitudinal field [66]. This effect can be mim-
icked in our model by introducing a background
constant electric field.

The effects of such gauge-mediated interactions
might be quite strong and will be studied by
looking at real-time dynamical properties of our
model in the next sections. The analysis will be
performed by numerically studying the Hamilto-
nian (4) with a t-DMRG algorithm, whose dy-
namical evolution is implemented through the
Runge-Kutta method. Details about the preci-
sion of our algorithm are given in the Appendix.

3 Spontaneous pair production

In this section, we will examine the phenomenon
of spontaneous pair production in the Zn-
Schwinger model for (1 + 1)-dimensional QED,
by simulating with our model the real-time dy-
namics of the Dirac sea vacuum, in absence of an
external electric field. This effect has also been
considered in other approaches [53, 54, 55, 51]
and experimentally analyzed in a small system
(4 qubits) of trapped ions [27].

In order to test the stability of the Dirac vac-
uum with respect to spontaneous pair produc-
tion, we prepare the system in the m → ∞
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ground state

|Ψ0(t = 0)〉 = |0〉Dirac, (11)

corresponding to the Dirac sea vacuum, and
study its evolution under the action of the Hamil-
tonian with different values of the coupling con-
stants m, g, with either m > mc or m < mc.
For completeness, we will perform our analysis
for all values of m, both positive and negative,
but we stress that the Dirac vacuum we take as
initial state is highly excited for m < mc, while
it is very close to the true ground state in the
confined phase and in particular when m is large
and positive. In the language of spin systems, this
would be analogous to preparing an Ising system
in the paramagnetic ground state, by setting the
external transverse field h = 0, and then suddenly
quenching the Hamiltonian to a different value of
h, with h < 1 (ferromagnetic phase) or with h > 1
(quenching into the paramagnetic phase) [63].

Let us consider the Z3 case. To test the evolu-
tion of the Dirac sea vacuum after the quench, we
shall numerically calculate three different quanti-
ties.

3.1 Mean particle density
The first quantity we consider is the mean particle
density

ρ(t) = 1
N

∑
x

〈Ψ0(t)|1− (−1)x

2 +(−1)xψ†xψx|Ψ0(t)〉,

(12)
evaluated on the evolved Dirac sea vacuum

|Ψ0(t)〉 = e−iHt|Ψ0(t = 0)〉, (13)

where, since ~ = 1, time is measured in units
of [energy]−1. The quantity (12) vanishes on the
Dirac sea vacuum and takes the value 1 on the
state with the maximal number of mesons.

To perform a first test on our model, we calcu-
late ρ(t) for a chain of N = 4 sites, after a quench
to m = 0.5 and g =

√
6/2π, which correspond to

the parameters used in the experimental set up
of Ref. [27]. Figure 3 shows our result: the den-
sity starts form zero to go very close to the value
1/2, corresponding to the formation of one meson.
After reaching a maximum, recombination effects
bring the value down again, in perfect agreement
with observations [27].

More generally, we set g =
√

6/2π and quench
to different values of m. The temporal evolution

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
t

0.0

0.1

0.2

0.3

0.4

ρ
(t

)

m = 1.00

m = 2.00

m = 3.00

m = 5.00

(a)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
t

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ρ
(t

)

m = −5.00

m = −3.00

m = −2.00

m = −1.00

(b)

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
t

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

ρ
(t

)

m = −0.80

m = −0.50

m = −0.00

m = 0.50

(c)

Figure 4: Z3-model. Time evolution of particle density
in a system initially prepared in the Dirac sea vacuum
and quenched to different values of mass, at fixed g =√

3/π and N = 40: (a) m ≥ 1.0, (b) m ≤ −1.0, (c)
−1.0 < m < 1.0.
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of ρ is shown in Fig. 4 for (a) large positive values
of the mass (m ≥ 1.0), (b) large negative values
of the mass (m ≤ −1.0), (c) small absolute val-
ues of the mass (−1.0 < m < 1.0). We clearly
see that for very large values of the mass (both
positive and negative), ρ(t) periodically oscillates
between zero and a rather small value, due to a
small pair production rate and to strong recom-
bination effects: thus, the Dirac sea vacuum is
essentially stable. On the contrary, for smaller
values of |m|, the density increases rapidly up to
values close to 1 (corresponding to the mesonic
ground state), to start then oscillating because of
recombination effects, now around a large value,
showing that the Dirac sea vacuum is unstable.
This is particularly evident for quenches to values
of the mass close to the critical one, mc ' −0.33.

Let us scrutinize the curves of Fig. 4 as a
function of m. Figure 5(a) shows the maximum
value of ρ(t), extrapolated form the first peak: it
is clear that the largest pair population occurs
close to the phase transition. In Fig. 5(b) we
show instead the period T of the oscillations, for
m > mc. We see that the data are very well de-
scribed by the continuous line, which corresponds
to the best fit obtained with the functional form
T (m) = 1/(am+ b). This form is expected from
a first-order approximation, according to which
the period might be estimated from the inverse
of the energy difference between the Dirac sea
energy (EDirac/N = −m) and the energy of the
mesonic state (Emeson/N = m + g2/2), yielding
a = 2, b = g2/2 ' 0.48. The best fit yields the
slightly different values a = 0.26 and b = 0.42,
but qualitatively confirms such a functional de-
pendence.

In the Appendix, we give details on the
finite size scaling analysis we performed. To
summarize our results, we show in Fig. 6 the
contour plot of the density ρ∞(t) extrapolated
for N → ∞, in the whole range of the quenched
mass m ∈ [−5,+5]. We can conclude that the
Dirac sea vacuum is unstable for values of the
mass close to the critical value mc, whereas pair
production is strongly suppressed for large values
of m.

−6 −4 −2 0 2 4 6
m

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

ρ
m

ax

(a)

0 1 2 3 4 5
m

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

T

FIT

(b)

Figure 5: Analysis of the Dirac sea vacuum stability for
g =

√
3/π and varying m. (a) Value of the first maxi-

mum of ρ(t). (b) Period of the oscillations after the first
maximum, for m > mc. The fit yields T = 1/(am+ b),
with a = 0.26 and b = 0.42.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
t

−4

−2

0

2

4

m

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

ρ
∞

(t
)

Figure 6: Contour plot of the asymptotic particle density
ρ∞(t), obtained by extrapolating different finite-N re-
sults, for g =

√
3/π and quenched mass m ∈ [−5,+5].
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3.2 Entanglement entropy
The second quantity we analyze is the time evo-
lution of the half-chain entanglement entropy

SN/2(t) = −TrA {ρA(t)log2 [ρA(t)]} , (14)

where the chain has been partitioned in two sub-
sytems A and B, consisting of the first and last
N/2 sites of the chain, respectively. The initial
Dirac sea vacuum is separable, hence SN/2(t =
0) = 0.

Figures 7(a)-7(b) show some examples of
SN/2(t) for large (positive and negative) values
of m and g =

√
3/π. The entanglement en-

tropy displays an oscillatory behaviour, reaching
a maximum at relatively small values of m (e.g.
Smax
N/2 ∼ 0.5 for m = 2.0 or m = −3.0). The pe-

riod of these oscillations increases as m decreases
and, at the same time, the entropy reaches higher
values, of the order of unity, for small m, as one
can observe in Fig. 8(a). The qualitative expla-
nation for the m-dependence of the period is the
same as that given in Fig. 5.

For m close to the critical value mc (see for
example the data for m = 0.0,−0.5), the entropy
increases much faster and monotonically. Thus,
we can conclude that when the phenomenon of
pair production is dominant, quantum corre-
lations between the two parts of the chain are
larger due to the fact that the spontaneously
created entangled particle/antiparticle pairs
spread along the chain. This effect has been
extensively studied in free fermionic models [67],
where entanglement can be shown to increase
linearly with time, at least as long as one
can assume a maximum speed of propagation
(the Lieb-Robinson bound [75]). If disorder
and/or long-range interactions are not consid-
ered, this behavior has also been confirmed in
several integrable and non-integrable models
[68, 69, 70, 71, 72, 73, 74]. In Ref. [63], the time
evolution of the half-chain entanglement entropy
has been studied for the Ising model with both a
transverse and a longitudinal field, which admits
a confined phase [66], showing that the growth
of the entanglement entropy is strongly reduced
for quenches within the confined (ferromagnetic)
phase. This corresponds to what we observe in
our model [76]. The black dashed line in Fig.
8(a) shows the linear behavior of the entangle-
ment entropy in the free case. For small but
non-zero values of m, we can clearly recognize a
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Figure 7: Z3-model. Time evolution of the half-chain
entanglement SN/2(t) of a system initially prepared in
the Dirac sea vacuum, for g =

√
3/π and (a) m ≥ 2.0,

(b) m ≤ −2.0, (c) −2.0 < m < 2.0. The black dashed
line in panel (c) represents the free-fermion case (m =
0, g = 0).
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Figure 8: Z3-model. (a) Time evolution of the half-
chain entanglement SN/2(t) of a system initially pre-
pared in the Dirac sea vacuum, for g =

√
3/π in the

range −2.0 < m < 2.0. The black dashed line repre-
sents the free-fermion case (m = 0, g = 0). (b) Same
as in (a) but with m = −0, 1,−0, 2. The continuous
lines show the logarithmic fit.

slow-down of the entanglement entropy growth,
which is now well described by a logarithm:
SN/2(t) ∼ log t, as shown in Fig 8(b). When
the interaction is strong and we are deep in
the confined phase, the system does not seem
to evolve toward an equilibrium configuration,
at least on the time scale of our simulations.
Indeed, entropy is strongly suppressed and shows
revivals, similar to what happens in models
where the quantum scar phenomenon appears
[77, 37, 38].

3.3 Correlation functions

As a last indicator, we consider the time evolution
of the connected correlation functions

G0(x−L/2)(t) = 〈nL/2(t)nx(t)〉−〈nL/2(t)〉〈nx(t)〉
(15)

shown in Fig. 9. For small values of m, these
functions exhibit a light-cone spreading, typical
of conformal or integrable theories, as discussed
in [78]. However, as we enter in the intermedi-
ate and strong-coupling region, we observe a lo-
calization effect and an oscillatory behaviour, in-
dicating that particle/antiparticles pairs do not
spread, but are cyclically created and recom-
bined. Similar behaviors have been observed in
other models [63, 44].

4 Pair production in an external field
In the context of particle physics, pair production
is often studied in presence of an external elec-
tric field, from which the pair production rate is
expected to depend. For the Schwinger model,
the critical value Ec of the external electric field
at which the e+e− production rate should reach
a maximum is given by Ec = m2/g (which, in
SI units, reads Ec ≈ 1.32 × 1018 V/m [33]), but
this effect has never been observed experimen-
tally since the aforementioned critical value is still
out of the range of even the most powerful lasers.
In 1 + 1 dimensions, a formula for the production
rate has been proposed in [79, 80]:

ρ̇ = eE0
2π exp

(
−πm

2

eE0

)
= m2

2π ε exp
(
−π
ε

)
(16)

where ρ̇ represents the time derivative of the to-
tal density of the chain in the infinite length limit,
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Figure 9: Z3-model. Contour plot of the correlation
function G0(x − L/2) of a system initially prepared in
the Dirac sea vacuum, for g =

√
3/π and (a) m = −0.5

(b) m = 1.0, (c) m = 4.5.
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Figure 10: Z3-model. (a) Particle density ρ(t) of
a system initially prepared in the Dirac sea vacuum,
represented as function of time for different values of
ε = E0/Ec. The values of the fixed parameters are
N = 50, m = 4.5 and g =

√
3/π. In panel (b), we

report three selected cases, together with linear fits of
densities at reasonably small times; these fits are used
to evaluate ρ̇ and test Eq. (16).

while ε = E0/Ec, E0 being the value of the ex-
ternal field. This formula predicts that the pro-
duction rate increases linearly for large values of
ε and it is exponentially suppressed for ε� 1.

This formula can be checked in our simulations.
We start by considering the Z3-model. We choose
values of (m, g) for which Dirac sea vacuum re-
sults stable according to the analysis described
in Sec. 3. At t = 0, we apply a constant uni-
form electric field E0 along the whole chain and
run the simulation to obtain ρ(t) for the corre-
sponding value of ε = E0/Ec, with Ec = m2/g.
Figure 10(a) shows the results of our simulations
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Figure 11: Z3-model. Half-chain entanglement SN/2(t)
of a system initially prepared in the Dirac sea vacuum,
evaluated for different values of the scaled external field
ε. We set m = 4.5 and g =

√
3/π.

for the case m = 4.5 and g =
√

3/π. We observe
that the vacuum is stable, with some small oscil-
lations, for very small values of ε. As we increase
ε, we start observing a linear regime, followed by
a saturation effect, as predicted by Eq. (16). Fig-
ure 10(b) shows the range in which we performed
the linear fit in order to evaluate ρ̇ and verify Eq.
(16).

Since we expect relevant size effects, we re-
peated the simulations for different values of N ,
namely N = 50, 60, 70, 80, 90. Also, to obtain the
large-n limit and check if we can reasonably ap-
proximate the U(1) limit with our model, we per-
formed an analogous analysis for the Z5 and the
Z7 models. Our results, which are summarized
in the Appendix, show that the approximation of
the continuum limit improves with n.

Finally, in order to get additional insights, we
calculated the time evolution of the half-chain en-
tropy, for different values of the external field. A
typical behavior is shown in Fig. 11, which dis-
plays the data for m = 4.5 and g =

√
3/π. We

observe that the entropy always presents an os-
cillatory behavior, with not-too-large maximum
values. More interestingly, we observe that an
increase of the external field, which results in
a rapid increase in particle pair production, as
shown in Fig. 10(a), does not contribute at all
to the increase and spread of entanglement. It
seems that the mechanism that dictates the dy-
namics of the particle/antiparticle pair produc-
tion is different in absence and in presence of
the external field: in the former case, entangled

quark/antiquark pairs are spontaneously created
out of the Dirac sea and spread along the chain, at
a mass-dependent speed. On the contrary, in the
latter situation, the electric charges rearranges
only locally to form mesonic couples that allow
for minimization of the interaction with the ex-
ternal electric field, without any spreading.

5 The string breaking mechanism

As recalled in the Introduction, the string break-
ing mechanism is a very interesting phenomenon
that is expected to occur in theories, such as
(3+1)-QCD, admitting confined phases, but that
is also very hard to prove, either analytically or
numerically, since its effects are mainly dynam-
ical. In the framework described in this arti-
cle this phenomenon can be investigated, since
one can simulate the real-time dynamics of a
generic initial state, which is let to evolve with
the discretized Hamiltonian (4). In particular,
the system is prepared in the string-excitation
state shown in the last configuration of Fig. 2,
where a particle and an antiparticle separated by
a distance l are created from the Dirac sea vac-
uum, giving rise to a non-zero string of electric
field in between.

In the following, we will consider the Z3 model
and a chain of length N = 80. We initialize our
system in a state with a string placed at the cen-
ter of the chain: the particle and the antiparticle
are put at a distance equal to 20 lattice sites, so
that the electric field is different from zero (and
equal to +

√
2π/3) only on the 19 central links

of the chain. The evolution of this state is fol-
lowed by looking at the value of the electric field
Ex,x+1(t) on each link. We report the analysis of
the real time dynamics of such a string for three
different values of (m, g), specifically correspond-
ing to (a) weak interactions (m = 0.1, g = 0.1),
(b) intermediate interactions (m = 0.3, g = 0.8),
(c) strong interactions (m = 3.0, g = 1.4). The
total evolution of the initial is also affected by
the instability of the Dirac sea vacuum that we
examined in the previous sections. Thus, to im-
prove the interpretation of our numerical results,
we subtract from Ex,x+1(t) the value of the elec-
tric field that would be obtained starting from the
Dirac sea vacuum for the same values of (m, g).
The data, corrected accordingly, are shown in Fig.
12. They clearly show three different situations:
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a) for weak interactions, the string starts to
spread and breaks into particle/antiparticle
pairs (mesons) that, after a short time dur-
ing which one can notice a rich process of
pair production and recombination, stabilize
in a configuration with two mesons localized
at the edges of the string; the two mesons are
deconfined, since they move away one from
each other at a constant speed;

b) for intermediate interactions, the string
does not spread; still, it breaks into par-
ticle/antiparticle pairs (mesons) that, as in
the previous case, quickly stabilize in a con-
figuration where we can still distinguish two
mesons localized at the edges of the string;
however, now the two mesons are confined,
since they remain at a fixed distance from
each other;

c) for strong interactions, the string is com-
pletely stable: it does not spread and it does
not break into mesons.

The simulations shown in Fig. 12 can be re-
peated for any couple of values (m, g). Our re-
sults are summarized in Fig. 13, where we show
the contour plot of the large-t (namely t = 4.0
in our units) total value of the electric field at
the center of the chain, defined as the sum of the
electric field on the 12 central links, as a function
of the coupling constants (m, g). The two (white)
level curves correspond to 10% (dotted line) and
50% (solid line) of the initial value, respectively.
From this picture, the three regimes described
above are clearly identified: (a) the lighter and
central part of the diagram corresponds to the
breaking of the string into two deconfined mesons;
(b) the reddish part of the diagram corresponds
to the breaking of the string into two confined
mesons; (c) the darker part corresponds to a sta-
ble string configuration.

It is interesting to examine the string breaking
phenomenon by looking also at the time evolu-
tion of the half-chain entanglement entropy, for
different values of (m, g). Figure 14 shows the
behaviour of SN/2 evaluated on the time evolu-
tion of the string state, by first keeping g = 0.1
fixed and lettingm vary with (a) positive, and (b)
negative values; and then by (c) keeping m = 0.1
fixed and letting g vary. These graphs confirm
and corroborate what was found by looking at
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Figure 12: Z3-model. Real-time dynamics of a string:
evolution of the electric field Ex,x+1(t) on links, for
(a) (m = 0.1, g = 0.1), (b) (m = 0.3, g = 0.8), (c)
(m = 3.0, g = 1.42). As explained in the text, the
plotted value of the electric field is that obtained after
subtracting the effects due to spontaneous pair produc-
tion, which tends to blur the dynamics of the string.
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Figure 13: Contour plot in the (m, g) plane of the
asymptotic total value of the electric field at the cen-
ter of the chain. The two white level curves correspond
to 10% (dotted line) and 50% (solid line) of the initial
value, respectively.

the real time dynamics of the electric field con-
figuration: namely a growth of the entanglement
entropy that is linear for weak interactions (small
m and/or small g), sublinear for intermediate in-
teractions and suppressed (with for small oscilla-
tions) in the strong coupling regime.

6 Conclusions

We have investigated the out-of-equilibrium
properties of (1 + 1)-dimensional QED, approxi-
mated via a Zn Schwinger model. By means of
simulations, focusing on the stability of the Dirac
vacuum with respect to particle/antiparticle pair
production and on the string breaking mecha-
nism, we have studied the effects of confinement
on the real-time dynamics of the model. We have
found that confinement is not a feature of the
U(1) Schwinger model only, having a relevant
effect on the dynamical properties of the Zn-
model as well, as it is proved by the oscillatory
behaviour and lack of thermalization for pair
production, and by the total suppression of the
breaking and spreading of string excitations,
with a perfect localization of the latter.

Let us notice that such a reduction of entangle-
ment and slow-down of the dynamics have been
observed in other systems. This is the case not
only of models with long-range interactions [81],
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Figure 14: (a) Z3-model. Time evolution of the half-
chain entropy SN/2(t) for: (a) g = 0.1 and different
positive values of m, (b) g = 0.1 and different negative
values of m, (c) m = 0.1 and different values of g.
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but also of the Ising and Potts models with both
a transverse and a longitudinal magnetic fields
[63, 82]. A similar behaviour has also been seen in
constrained models which exhibit quantum scar
states [37, 38] and in spin-1/2 chain Hamiltonians
that can be derived form abelian gauge models in
the quantum link approach [44]. It is interest-
ing to notice that, in the two latter cases, the
physical states of the system under consideration
are constrained to lie in a restricted subspace of
the total Hilbert space, a fact that is shared by
our model, where the role of the Gauss law con-
straint is crucial. This is also at the heart of
the recent proposal to experimentally implement
these Hamiltonians with Rydberg atomic systems
in the Rydberg-blockade regime [39]. We plan to
further investigate the role of the gauge constraint
in future work.
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A Finite size scaling and large-n limit
The question about how our lattice Zn model con-
verges to the U(1) continuum model was theoret-
ically studied in [40] and then thoroughly checked
via numerical simulations in [58]. There we no-
ticed that one recovers the Schwinger model for
QED in 1 + 1 dimensions, obtaining a good ap-
proximation already for lattice sizes of the order
of 50 sites and n = 3. We refer the interested
reader to these references for details on how one
can rigorously control both the continuum and
the finite-n limits. In this Appendix we give some
additional details on the numerics and finite-size
and large-n analyses we performed for the time-
dependent simulations.
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Figure 15: Z3-model. Finite size analysis of the particle
density, for m = 2.0; (a) behaviour of ρ(t) close to its
first maximum; (b) scaling of ρ(t0 = 0.52) with the
chain size N ; (c) time evolution of ρ∞(t).
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Figure 16: Contour plot of ρ∞(t) for (a) Z5-model and
m ∈ [−5.0,+5.0]; (b) Z7-model and m ∈ [−2.0,+1.0].
Notice that in the latter case we reduced the mass range,
since numerical simulations are computationally cumber-
some.

Numerical precision. All simulations have
been performed with a time-dependent DMRG
(t-DMRG) code, which is a well-established
method for studying the dynamical properties
of quantum systems in one dimension [83]. The
time-evolution is based on a Runge-Kutta 4th
order scheme, with a time step of δ = 0.01. The
initial state of the time-evolution is implemented
by calculating the ground-state of two different
Hamiltonians: i) for the pair production analysis,
the vacuum state (see Fig. 2) is obtained by
using the Hamiltonian (4), setting t = 0 and
choosing large values of m and g (i.e. m = 5,
g = 3); ii) for the string breaking mechanism,
we added to the aforementioned Hamiltonian
localized electric field terms Ex,x+1 on each
link in which the initial string is created. In
our simulations, we used a variable number
of DMRG-states, up to 1200, in order to keep
the truncation error below 10−6 at each time step.

Spontaneous pair production. To study finite
size effects, we repeated our simulations for dif-
ferent chain size (N = 16, 20, 24, 28, 32, 36, 40),
in order to extract the infinite size limit of ρ(t).
For example, Fig. 15(a) shows the behaviour of
ρ(t) close to its first maximum, for m = 2.0 and
different chain size. We find that, at all instants
of time t0, the infinite size limit ρ∞(t0) can be
extrapolated according to the following fit:

ρ(t = t0) = ρ∞(t0)− β(t0)
N

. (17)

An example, for m = 2.0 and t0 = 0.52 is shown
in Fig. 15(b), for which we get ρ∞(t0) = 0.2175±
0.0001 and β(t0) = 0.1703 ± 0.0001. The time
evolution of ρ∞(t) is given in Fig. 15(c).

We also repeated the same simulations for Z5
and Z7. In Figs. 16(a) and 16(b) we show the con-
tour of ρ∞(t) in the whole range of the quenched
mass m ∈ [−5,+5], similarly to what was done in
Fig. 6 for Z3. A very similar behavior is observed.
Pair production in an external field. To

evaluate finite-size effects in the pair produc-
tion rate, we repeated the simulations for N =
50, 60, 70, 80, 90. In order to check the large-n
limit and veriy that the U(1) limit can be rea-
sonably approximated, we performed simulations
for the Z5 and Z7 models. The results are shown
and compared with the Schwinger formula in Fig.
17(a) and Fig. 17(b). Even at the largest system
sizes that can be numerically investigated, it is
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Figure 17: (a) Pair production rate ρ̇ in the Z3 model as
function of ε, for different chain size N ; the continuous
result of Eq. (16) is shown for comparison. (b) Pair
production rate ρ̇ as function of ε for different Zn models
(at fixed N = 90) and comparison with the continuous
result of Eq. (16).

evident that the numerics still suffers from signifi-
cant finite-size and finite-n corrections. However,
the data follow a pattern that is qualitatively in
agreement with the predictions of the continuum
U(1)-model and show the correct scaling. We
conclude that the system describes the physics
of the Schwinger model.
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